Back in 2018 we posted about someone who had combined an ultrasonic piezo speaker and an SDRPlay RSP1A in order to create a device that can detect the ultrasonic sonar sound from bats.
Recently on YouTube Matt from the TechMinds YouTube channel was able to create a similar system using a MEMS microphone from Knowles which can receive audio in the 100 Hz ~ 80 kHz range. He connects the microphone to a 3.3V supply and connects the output of the microphone to his SDRplay RSPDx.
The system was then able to successfully hear the sound of bat sonar at his home location in the UK.
Ultrasonic BAT Detector Using Software Defined Radio
Sivan and his collaborators developed inexpensive 434 MHz band tracking tags for bats that emit radio pings every few seconds. These pings do not contain any location data, however the location is accurately tracked by several USRP SDRs with high accuracy GPSDO oscillators set up around the target tracking area. A radio direction finding technique known as "time difference of arrival" or TDoA is used to pinpoint the location of each tag. Sivan writes:
A wildlife tracking system called ATLAS, developed by Sivan Toledo from Tel-Aviv University in collaboration with Ran Nathan from the Hebrew university, enabled a science breakthrough reported in an article in Science that was published yesterday.
The system uses miniature tracking tags that transmit radio pings in the 434 MHz bands and SDR receivers (Ettus USRP N200 or B200). Software processes the samples from receivers to detect the pings and to estimate their time of arrival. The overall system is a "reverse-GPS" system, in the sense that the principles and math are similar to GPS, but the role of transmitters and receivers is reversed. A youtube video explains how the system works. SDR-RTL dongles can certainly detect the pings, but their oscillators are not stable enough to accurately localize the tags.
The system has been used to track 172 wild bats (in batches, some consisting of 60 simultaneously-tagged bats). The results showed that bats can make novel shortcuts, which indicates that they navigate using a cognitive map, like humans. The system, and other ATLAS systems in the Netherlands, England, Germany, and Israel are also tracking many different animals, mostly small birds and bats.
The video below shows the bats being tracked on a map accelerated to 100x.
The Science article itself is mostly about the discoveries on bat behaviour that were made by the system. However the YouTube video embedded below explains a bit more about how the technical radio side works.
A Technical Overview of the ATLAS Wildlife Tracking System
Over on YouTube user Jan de Jong has uploaded a few screenshots and sounds on a video which shows that he was able to receive the ultrasonic sound of bats by connecting a small piezo speaker to an SDRplay RSP1A.
The piezo speaker used in reverse as a microphone appears to pickup bat echolocation sound waves which are typically between 20 to 200 kHz. The piezo is resonant in the 40 - 55 kHz range and converts sounds from that range into electric pulses that can be received directly by the RSP1A.