Tagged: cocom

December High Powered Rocket Flight with RTL-SDR used for GPS Measurements

The rocket carrying the RTL-SDR.
The rocket carrying the RTL-SDR.

Back in April and July of last year we posted about Philip Hahn and Paul Breed's experiments to use an RTL-SDR for GPS logging on their high powered small rockets. Basically they hope to be able to use an RTL-SDR combined with a computing platform like a Raspberry Pi or Intel Compute stick and software like gnss-sdr to record GPS data on their rocket. Using an RTL-SDR would get around the COCOM limits that essentially stop GPS from working if it measures faster than 1,900 kmph/1,200 mph and/or higher than 18,000 m/59,000 ft.

In the past they've been able to get usable data from the flights, but have had trouble with reliability and noise. That said they also tried commercial GPS solutions which have also failed to work properly even on flights travelling under the COCOM limits, whereas the RTL-SDR actually got data that could still be post processed.

On their latest flight they still had trouble with the RTL-SDR GPS solution working live during flight, but RF GPS data was still recorded and post-processing the data with SoftGNSS yielded results again as in their previous trials. The post goes over the more details and provides the raw RF data to play with if you want to have a go at extracting the data yourself.

If you are interested in a full summary of Phillip and Paul's experiments, then the GNU Radio blog has a nice summary written by Phillip that explains their full journey of trying to get a working RTL-SDR based GPS system for their rockets.

Rocket Trajectory as measured by the RTL-SDR based GPS receiver.
Rocket Trajectory as measured by the RTL-SDR based GPS receiver.

Simulating GPS with LimeSDR and Receiving it with an RTL-SDR

In previous posts we showed how Phillip Hahn had been trying to use his RTL-SDR as a GPS receiver on a high powered rocket in order to overcome the COCOM limits which prevent commercial GPS devices from operating when moving faster than 1,900 kmph/1,200 mph and/or higher than 18,000 m/59,000 ft.

In order to test future flights with the RTL-SDR GPS receiver, Phillip has been simulating GPS rocket trajectory signals and using his LimeSDR. The RTL-SDR then receives the simulated GPS signals which are then fed into SoftGNSS for decoding. The simulation simulates the Japanese SS-520-4 rocket which is a 32′ long, 2′ diameter small high powered rocket capable of putting loads like cubesats into orbit affordably. Using the simulated data Phillip is able to calculate the trajectory and see all the motor burns in the velocity profile.

While Phillip intends to use the RTL-SDR on a similar rocket in the future, he notes that the simulation does not take into account problems such as thermal noise, or RF interference, rocket jerk, satellite occlusion and vibration problems.

LimeSDR Simulated GPS Rocket Trajectory Received with RTL-SDR.
LimeSDR Simulated GPS Rocket Trajectory Received with RTL-SDR.