Tagged: kerberosdr

Networked Radio Direction Finding with KerberosSDR and RDFMapper

We've just uploaded a short Python script to GitHub that allows radio direction bearings from a KerberosSDR to be used with the RDF Mapper software created by Jonathan Musther. RDF Mapper is a (~US$25) program that was initially written for the RDF42, a kit based doppler direction finding system. RDFMapper runs on Windows/MacOS and Linux.

KerberosSDR is our experimental 4-Tuner Coherent RTL-SDR product made in collaboration with Othernet. It can be used for applications such as radio direction finding and passive radar. Currently it's available for US$149 on the Othernet store.

The RDF Mapper software allows you to upload bearings from multiple devices distributed around a city to a public RDF server, and view all the bearings on any internet connected PC. This can allow you to quickly triangulate the location of a transmitter.

Normally you would use RDFMapper combined with an RDF42 to upload bearings, but we've written a simple script that can be used to upload bearings generated by a KerberosSDR onto the server. The RDFMapper software can then be used to visualize those bearings.

The script is based on Python, and can run directly on the Pi 3/4 or Tinkerboard that is running the KerberosSDR, or on another PC that can see the KerberosSDR bearing server if you prefer.

Instructions are available on the GitHub page. Simply set unique station names for each of your distributed units, entry your lat/lon and fixed direction bearing. Then on the RDF Mapper software open the 'Web upload/download' tab and add the unique station ID name. All the other tabs for connecting to a GPS and serial port can be ignored, as those are used for the RDF42.

This script will only work for stationary KerberosSDR units as the lat/lon is fixed. If you want to try radio direction finding in a vehicle, we recommend using our Android App for a better experience. If there is interest, we may also add support for the Android app to upload to an RDFMapper server for mobile bearing uploads. 

Notes: RDFMapper runs on the system's default browser and it needs to run in either Chrome or Firefox to work. IE does not work. It also appears that Jonathan processes orders manually, so we just want to note that there may be a delay between payment and receiving the software.

RDF Mapper Software. Data from networked units.
RDF Mapper Software. Plotting bearing data from networked units.

KerberosSDR Direction Finding with Android App Demo and Tutorial

Over on our YouTube channel we've uploaded a short video that gives a tutorial and demo of the KerberosSDR being used as an RF direction finding system in a car. If you weren't aware, KerberosSDR is our recently released 4x Coherent RTL-SDR which can be used for tasks such as direction finding and passive radar. KerberosSDR was successfully crowdfunded over on Indiegogo, and we have recently completed shipments to all backers. Currently we are taking discounted pre-orders for a second production batch on Indiegogo.

In the video we use a Raspberry Pi 3 B+ running the KerberosSDR image as the computing hardware. The Pi 3 is connected to a high capacity battery pack. It is important to use a high quality battery pack that can output 3A continuously as this is required for the Raspberry Pi 3 B+ to run without  throttling. The battery pack we used has multiple outputs so we also power the KerberosSDR with it.

Once powered up we connect to the KerberosPi WiFi hotspot, and then browse to the web interface page. We then tune the KerberosSDR to a TETRA signal at 858 MHz, perform sample and phase calibration, set the decimation and FIR filtering, and then enable the direction finding algorithm. At this point we enter the Android app and begin direction finding and logging our data.

After driving for a few minutes we stop and check the logfile and find that the majority of the bearing lines point in one direction. With this info, a drive in the direction of the bearing points to gather more data is performed. Once additional data was gathered we open the log file up again, and see where all the bearing lines cross. Where they cross indicates the location of the 858 MHz transmitter. The heatmap data also gives us a second confirmation that the transmitter is located where we think.

NOTE: Some of the features shown in the video like the heatmap, confidence settings and plot length settings are not yet released in the current version of the app. They will be released next week.

Full instruction on using the KerberosSDR are available at rtl-sdr.com/ksdr.

KerberosSDR Direction Finding With Android App Demo and Tutorial