Tagged: dsp

DSP Illustrations: Learning DSP with a Soundcard SDR

DSP Illustrations is an online course that aims to explain complex digital signal processing (DSP) concepts visually instead of on a purely theoretic and mathematical level. Most of the content appears to be free, but some premium content requires payment.

One premium course that they've recently released is titled "Using your Soundcard as a Software-defined radio". In this course they use a standard PC sound to transmit (with the speakers) and receive (with a microphone) audio signals. All the DSP code is produced in Python and the course aims to walk you through all the concepts shown below.

  • baseband transmission of real-valued signals
  • passband transmission including up- and downconversion
  • modeling the audio channel as an LTI system for reproducable simulations
  • eye diagram drawing
  • symbol timing recovery
  • channel coding
  • definition and implementation of a frame structure, including header, payload and checksum
  • integration of the wireless transmission into a UDP data stream

Although the "SDR" isn't using radio frequencies, the exact same DSP concepts that apply with audio also apply to radio. So this can be a cheap way to get hands on DSP experience without the cost of needing to own a transmit/receive capable SDR.

This course costs about US$20, but the first three chapters are free.

Using a soundcard to study wireless communications.
Using a soundcard to study wireless communications.

University Course on Digital Signal Processing with the RTL-SDR

Over the past few years the Electrical Engineering department of the University of California, Berkley has been using RTL-SDR’s in their EE123 Digital Signal Processing (DSP) course. We’d posted about this course years before when it first came out, but recently Micheal Lustig (KK6MRI), the Associate Professor of the course wrote in to let us know that the course has evolved and is now better than ever.

The course covers DSP essential material such as the Discrete Fourier Transform, Fast Fourier Transform, RF Filter design, as well as more complex subjects. All the course material is available in note and video form if you scroll down on the main page at https://inst.eecs.berkeley.edu/~ee123/sp16/index.html.

However, the professor writes that the best gem that they have developed in their labs which can be found at https://inst.eecs.berkeley.edu/~ee123/sp16/labs.html. The labs run on the web based Ipython/Jupyter Notebooks and guide you through the implementation of an ADS-B receiver, broadcast FM and subcarrier demodulation, frequency calibration with GSM, and a full python APRS transceiver using the baofeng radio and a custom audio interface. These labs are an excellent tutorial into the world of DSP.

The final project of the class is also very interesting. The students of the class were given the task to send images using a Baofeng UV-5R handheld radio and receive them with an RTL-SDR. On the day of the project demonstration they were given two images, and the challenge was to transmit the best quality image over 75 seconds. Videos of the presentation can be found at https://inst.eecs.berkeley.edu/~ee123/sp16/projectVideos.html. The winning team used a combination of five Baofeng’s for simultaneous transmission of a compressed image and an RTL-SDR for receiving.

Richard-Allan-James

DesktopSDR MATLAB RTL-SDR Text Book Released

Back in August we posted about an RTL-SDR related text book called DesktopSDR that was due to be released later in the month. The text book discusses technical SDR topics, with the RTL-SDR used as the radio receiver and MATLAB used as the digital signal processing tool. It looks to be very useful to students of radio or communications engineering. There were a few delays with the release, but it is now out at www.desktopsdr.com. The eBook version is free whilst the print version is soon to be released on Amazon for about $68 USD for the paperback and $89 USD for the hard back

To go along with the book they have also released several accompanying videos that are available at desktopsdr.com/videos.

The books blurb reads:

The availability of the RTL-SDR device for less than $20 brings software defined radio (SDR) to the home and work desktops of EE students, professional engineers and the maker community. The RTL-SDR can be used to acquire and sample RF (radio frequency) signals transmitted in the frequency range 25MHz to 1.75GHz, and the MATLAB and Simulink environment can be used to develop receivers using first principles DSP (digital signal processing) algorithms. Signals that the RTL-SDR hardware can receive include: FM radio, UHF band signals, ISM signals, GSM, 3G and LTE mobile radio, GPS and satellite signals, and any that the reader can (legally) transmit of course! In this book we introduce readers to SDR methods by viewing and analysing downconverted RF signals in the time and frequency domains, and then provide extensive DSP enabled SDR design exercises which the reader can learn from. The hands-on SDR design examples begin with simple AM and FM receivers, and move on to the more challenging aspects of PHY layer DSP, where receive filter chains, real-time channelisers, and advanced concepts such as carrier synchronisers, digital PLL designs and QPSK timing and phase synchronisers are implemented. In the book we will also show how the RTL-SDR can be used with SDR transmitters to develop complete communication systems, capable of transmitting payloads such as simple text strings, images and audio across the lab desktop.

Download the book at desktopsdr.com
Download the book at desktopsdr.com

DesktopSDR: A new free textbook about using the RTL-SDR with MATLAB

On the 26th of August a new technical text book titled “Software Defined Radio using MATLAB® & Simulink® and the RTL-SDR” is due to be released for free in eBook form and in print form for an as of yet unknown price on Amazon. The book is written by four members of the Department of Electronic and Electrical Engineering at the University of Strathclyde in Scotland. 

MATLAB is a technical computing language and software suite used commonly by professional and student scientists and engineers. It is similar to GNU Radio in terms of its digital signal processing (DSP) capabilities. Back in January 2014 the MATLAB team released an update which enabled the RTL-SDR to be used as an RF input device.

The text book’s blurb reads:

The availability of the RTL-SDR device for less than $20 brings software defined radio (SDR) to the home and work desktops of EE students, professional engineers and the maker community. The RTL-SDR can be used to acquire and sample RF (radio frequency) signals transmitted in the frequency range 25MHz to 1.75GHz, and the MATLAB and Simulink environment can be used to develop receivers using first principles DSP (digital signal processing) algorithms. Signals that the RTL-SDR hardware can receive include: FM radio, UHF band signals, ISM signals, GSM, 3G and LTE mobile radio, GPS and satellite signals, and any that the reader can (legally) transmit of course! In this book we introduce readers to SDR methods by viewing and analysing downconverted RF signals in the time and frequency domains, and then provide extensive DSP enabled SDR design exercises which the reader can learn from. The hands-on SDR design examples begin with simple AM and FM receivers, and move on to the more challenging aspects of PHY layer DSP, where receive fi lter chains, real-time channelisers, and advanced concepts such as carrier synchronisers, digital PLL designs and QPSK timing and phase synchronisers are implemented. In the book we will also show how the RTL-SDR can be used with SDR transmitters to develop complete communication systems, capable of transmitting payloads such as simple text strings, images and audio across the lab desktop.

While the book is not yet released the full table of contents is currently available for viewing on their downloads page. From looking at the table of contents, we can see that the text book looks very comprehensive and will likely be extremely useful for students who are learning RF and DSP concepts in university level classes. The team behind the book (desktopsdr.com) also have a YouTube channel where it appears that they are releasing supporting videos.

We will post again when the book is released.

Download the book at desktopsdr.com
Download the book at desktopsdr.com

https://www.youtube.com/watch?v=kK7xNQ9NVno