Tagged: gliders

Setting up a FLARM Receiver with an RTL-SDR and Orange Pi Zero: Tracking Gliders and Helicopters

Most people already know about ADS-B aircraft tracking, but few know about FLARM (FLight AlaRM). FLARM is a low cost and low power consumption ADS-B alternative which is often used by small aircraft such as gliders and helicopters for collision avoidance. It is used all over the world, and is especially popular in Europe, however it is almost non-existent within the USA.

Back in 2014 we posted about FLARM reception with the RTL-SDR, and also about the Open Glider Network (OGN). The OGN is an online FLARM aggregator that is similar to sites like flightaware.com and flightradar24.com which aggregate ADS-B data.

More recently, Łukasz C. Jokiel has posted a tutorial on his blog that clearly shows how to set up an RTL-SDR and Raspberry Pi Zero based FLARM receiver for feeding the Open Glider Network

Łukasz’s tutorial uses an Orange Pi Zero which is a very cheap (~$7 USD) Raspberry Pi embedded computing device. He also uses an RTL-SDR dongle and an antenna tuned to the FLARM frequency of 868 MHz. The tutorial goes over the Linux commands for installing the decoder, calibrating the RTL-SDR and setting up the Open Glider Network feeder.

Remember that FLARM is typically 10-100 times weaker than ADS-B so a good tuned antenna is required, and the OGN recommend building (pdf) a collinear coax antenna tuned to 868 MHz.

A Commercial FLARM receiver.
A Commercial FLARM sender/receiver.

Receiving and Decoding FLARM (Tracking Gliders, Helicopters etc) using the RTL-SDR

Over on our Facebook page, a user has let us know about the Open Glider Network project which makes use of the RTL-SDR dongle to decode FLARM. FLARM is a low cost and low power consumption ADS-B alternative which is often used by small aircraft such as gliders and helicopters for collision avoidance. With the right antenna, receiver and decoder any aircraft transmitting a FLARM signal could potentially be tracked on a map.

FLARM signals are transmitted at 868 MHz and are effectively weaker by 100-1000 times compared to standard ADS-B signals. The project recommends use of a high gain collinear antenna for receiving the weak FLARM signals. The open glider network project wiki contains information on how to set up their Linux based FLARM decoder that relies on the RTL-SDR for various embedded devices.

Once the software is up and running, the received and decoded FLARM packets can be seen on http://cunimb.fr/live/ as real time glider positions (also at http://cunimb.fr/live/3D/ in a 3D Google Earth).

FLARM Gliders shown in real time on a map
FLARM Gliders received with the RTL-SDR shown in real time on a map