Tagged: base station

DragonOS: Installing Crocodile Hunter For Detecting Fake 4G Cell Sites

A few days ago we posted about two SDR related DEFCON talks which were recently released. One of the talks was about detecting fake 4G base stations with a bladeRF SDR and a tool they created called "Crocodile Hunter". It is currently compatible with the bladeRF x40 and USRP B200. The talk summary is posted below as it nicely summarizes what fake 4G base stations are and what Crocodile Hunter can do.

4G based IMSI catchers such as the Hailstorm are becoming more popular with governments and law enforcement around the world, as well as spies, and even criminals. Until now IMSI catcher detection has focused on 2G IMSI catchers such as the Stingray which are quickly falling out of favor.

In this talk we will tell you how 4G IMSI Catchers might work to the best of our knowledge, and what they can and can't do. We demonstrate a brand new software project to detect fake 4G base stations, with open source software and relatively cheap hardware. And finally we will present a comprehensive plan to dramatically limit the capabilities of IMSI catchers (with the long term goal of making them useless once and for all).

The Crocodile Hunter software is apparently a little difficult to install and get running, so Aaron who runs DragonOS YouTube tutorial channel has uploaded a video documenting how to install and configure the software. The tutorial assumes that you are the running the latest DragonOS image which already includes a lot of the prerequisite software, and in his example he uses a USRP B205mini-i SDR.

DragonOS DEF CON 28 Crocodile Hunter Setup (DragonOS LTS PublicR4, srsLTE, USRP B205mini-i)

USRP SDRs used to Break 3G to 5G Mobile Phone Security

According to researchers at the International Association for Cryptologic Research it is possible to snoop on 3G to 5G mobile users using a fake base station created by an SDR. It has been well known for several years now that 2G mobile phone security has been broken, but 3G to 5G remained secure. However, the researchers have now determined that lack of randomness and the use of XOR operations used in the Authentication and Key Agreement (AKA) cryptographic algorithm's sequence numbering (SQN) allows them to beat the encryption.

In their research they used a USRP B210 SDR which costs about US$1300, but it's likely that cheaper TX/RX capable SDRs such as the US$299 LimeSDR could also be used. In their testing they used a laptop, but note that a cheap Raspberry Pi could replace it too.

Theregister.co.uk writes:

"We show that partly learning SQN leads to a new class of privacy attacks," the researchers wrote, and although the attacker needs to start with a fake base station, the attack can continue "even when subscribers move away from the attack area."

Though the attack is limited to subscriber activity monitoring – number of calls, SMSs, location, and so on – rather than snooping on the contents of calls, the researchers believe it's worse than previous AKA issues like StingRay, because those are only effective only when the user is within reach of a fake base station.

The full paper is available here in pdf form.

Tools used including a laptop, USRP B210 and a sim card reader.
Tools used including a laptop, USRP B210 and a sim card reader.