Tagged: cubesat

Help Track Data from CubeSail with an RTL-SDR

On December 16 Rocket Lab launched 13 new cubesats into orbit via it's Electron rocket which was launched from New Zealand. One of those Cubesats is "CubeSail" which is a set of two satellites that aims to deploy a 260 m long solar sail between the two.

CubeSail is a technology demonstration by CU Aerospace which shows the viability of solar sail propulsion for deep space missions. It was built and is operated by students at the University of Illinois at Urbana-Champaign through the Satellite Development, or SatDev student organization.

Over on Reddit, one of the engineers working on the Cubesail project has put out a request to help receive and upload any telemetry that you receive from the Cubesail satellite. Currently they only have one ground station which makes monitoring the satellite difficult as they can only collect data when it is passing overhead.  By employing the help of radio enthusiasts from around the world they hope to gather more data. He writes:

Hello amateur radio enthusiasts! I'm part of the CubeSail mission, one of the 13 satellites deployed early this morning (2018/12/16) from RocketLab's Electron rocket.

The reason why I'm posting is that we need your help! We're trying to gather as much data as possible from the beacons, but only have one groundstation at the moment. I've put together a little Python script which can be used to decode the data, so if you're interested and willing to help out a bunch of eager fellow space enthusiasts to get some data, please try and get a packet or two!


Here's the information you need to know (let me know if I'm missing anything):

Frequency: 437305 kHz

Modulation: GFSK (GR3UH scrambling)

Bandwidth: 15kHz

Callsign: WI2XVF

Link Layer: AX.25/HDLC

Baud Rate: 9600

TLE:

cubesail_temp
1 99999U          18350.31100694  .00048519  00000-0  21968-2 0 00004
2 99999 085.0351 178.2861 0013006 291.7248 120.7146 15.20874873000012

Here's a link to the decoder, it runs in Python 3: https://github.com/ijustlovemath/cubesail-decoder

According to the information a 437 MHz antenna is required, and most likely it will need to be a directional antenna that is hand or motor tracked. Some SatNOGS ground stations are already receiving and recording Cubesail data too.

An artists rendition of the CubeSail solar sail deployment
An artists rendition of the CubeSail solar sail deployment

Chasing Cubesats on a $25 Budget with an RTL-SDR and Homemade Antenna

Cubesats are small shoebox sized satellites that are usually designed by universities or amateur radio organizations for basic space experiments or amateur radio communications. Typically they have an orbit lifespan of only 3-6 months.

Cubesats typically transmit signals at around 435 MHz, and they are powerful enough to be received with a simple home made antenna and an RTL-SDR. To help with this Thomas N1SPY has created a YouTube video where he shows exactly how to construct a cheap eggbeater antenna made out of a few pieces of copper wire and an SO-239 UHF connector. Later in the video he demonstrates some Cubesats being received with his antenna, an RTL-SDR and the SDR-Console V3 software.

2018: Thomas N1SPY chases mini satellites on a budget

Receiving the Recently Launched BY70-1 Satellite

BY70-1 is a Chinese amateur Cubesat satellite which was recently launched on December 29, 2016. It is expected to stay in orbit for only 1 – 2 months due to a partial failure with the satellite releasing into an incorrect orbit. The purpose of the satellite is for education in schools and for amateur radio use. The receivable signals include an FM repeater and BPSK telemetry beacon both of which can be received at 436.2 MHz. The telemetry beacon is interesting because it also transmits images from an on board visible light camera. These signals can easily be received with an RTL-SDR or other SDR with an appropriate antenna.

Over on his blog Daneil Estevez has been posting about decoding these telemetry images. He’s been using telemetry data collected by other listeners, and the gr-satellites GNU Radio decoder which is capable of decoding the telemetry beacons on many amateur radio satellites. So far the decoded images haven’t been great, they’re just mostly black with nothing really discernible. Hopefully future decodes will show better images.

If you want to track the satellite and attempt a decode, the Satellite AR Android app has the satellite in its database.

Not many people seem to have gotten telemetry decodes or images yet, but below we show an image decoded by  on Twitter.

BY70-1 Image Decoded by @bg2bhc
BY70-1 Image Decoded by @bg2bhc

Using the RTL-SDR to listen to the Funcube Satellite

Recently, the FUNcube-1 satellite was successfully launched. The FUNcube is a CubeSat (a low cost miniature 10cm cube sized satellite) which is intended mainly for educating young people about radio, space, physics and electronics, but has also piqued the interest of amateur radio hobbyists.

Amateur radio hobbyist N4JTC’s has shared on his blog his experiences with receiving the FUNcube-1’s telemetry using his RTL-SDR dongle. By using the RTL-SDR to receive the telemetry beacon as the satellite passes overhead, he was able to use the FUNcube Dashboard software to record and decode and view the satellites telemetry data.

Receiving the FUNcube-1 Satellite
Receiving the FUNcube-1 Satellite

Cheap Satellite Receive Station with RTL-SDR

Blogger and Amateur Radio enthusiast N4JTC has posted a guide on setting up a satellite receiving station with the rtl-sdr. Originally the guide was intended for receiving the PhoneSat test satellites, but they have now gone offline after a week as planned. But, the guide is still useful for any current and future satellites.

The recent launch of the PhoneSats got my SDR and satellite juices flowing again. This time I decided to automate things because work seems to get in the way of my satellite listening fun. I found a combination that works great and incorporates FREE software and inexpensive hardware.

PhoneSatImg (http://www.n4jtc.com)