Tagged: cubesat

Receiving SSTV From the Russian UmKA-1/RS40S Cubesat

YouTuber 'saveitforparts' was recently contacted by the ground controller of the Russian UmKA-1/RS40S cubesat asking if he'd like to try and receive an SSTV image from the satellite. UmKA-1/RS40S is a small educational satellite assembled by a Russian high school. Originally it was intended for a radio astronomy experiment, but due to technical issues it's been switched to the secondary ham radio mission only.

Saveitforparts uses an RTL-SDR, directional Yagu antenna, PC running the MMSSTV decoder, and Android phone running the Stellarium satellite tracking app. After a few failed attempts he was able to eventually successfully track and receive the SSTV image as well as some telemetry.

We note that the SSTV image appears to have been specifically scheduled for saveitforparts personally, so if you try to receive this satellite yourself you will probably only be able to receive the telemetry signal.

Receiving Targeted Message From Russian Satellite

Spacewalker LNA 434 MHz In Prelaunch at CrowdSupply

Thank you to Zoltan and team for submitting news of the prelaunch of their Spacewalker LNA 434 MHz. Spacewalker LNA is designed to improve reception of PocketSat and Cubesat satellite signals when received with SDR devices like the RTL-SDR. Often these relatively weak signals are drowned out by strong interfering terrestrial signals like DVB-T and GSM. To solve this the triple filter and dual amplification design used in the Spacewalker LNA can help to isolate the satellite signals.

The team write that prototype versions of the LNA are already successfully in use around the world with SatNOGS stations. The device uses two state of the art QPL9547 LNA with 0.2 dB noise figure and 25 dB gain at 434 MHz and three 434 MHz SAW filters. The design also uses an interesting coax stub for ESD protection. It can be powered with 5V USB-C or via bias tee.

The LNA is currently in the prelaunch stages with CrowdSupply, so it will likely be released for crowd funding within the next few months. If you are interested in being notified when the campaign launched, be sure to sign up on the Crowd Supply page for updates.

Spacewalker LNA 434 MHz. Designed for PocketSat and CubeSat signals amidst strong DVB-T, TETRA, FM, and LTE signals from densely packed transmitter towers.
Spacewalker LNA 434 MHz. Designed for PocketSat and CubeSat signals amidst strong DVB-T, TETRA, FM, and LTE signals from densely packed transmitter towers.

An RTL-SDR telemetry decoder for the soon to be launched MRC-100 PocketQube Satellite

Thank you to Zoltan Doczi (HA7DCD) for submitting news about the MRC-100 Hungarian PocketQube Satellite that is scheduled to launch on a Falcon 9 on June 12. A PocketQube is smaller than a standard CubeSat as it is sized at only 5x5x15cm. Zoltan notes that the MRC-100 is the successor to the SMOG-1 satellite which we posted about back in March 2021. The satellite is named to honoring the 100th year anniversary of the HA5MRC Ham Radio Club at the Budapest University of Technology.

To help with decoding the Telemetry on the satellite an RTL-SDR based telemetry receiver was created by Peter and Miklos, and Levente HA7WEN has created an installation script for Raspberry Pi's and Linux PC's which installs OpenWebRX along with the satellite receiver software.

The satellite should be receivable with a simple satellite antenna, such as a handheld Yagi, Turnstile, Dipole or quadrifilar-helix antenna. It will be transmitting telemetry at 436.720 MHz. If you have a dish and tracking equipment for it, there is also a high speed downlink at 2267.5 MHz. Like SMOG-1 the satellite carries a sensor that is designed to measure human caused electromagnetic pollution. It also carries a camera and an AIS receiver for tracking marine vessels.

The MRC-100 CubeSat

TechMinds: Receiving and Decoding Packets from the GreenCube Cubesat Digipeater

GreenCube is a CubeSat by the Sapienza University of Rome, and it is designed to demonstrate an autonomous biological laboratory for cultivating plants onboard a CubeSat.

While this is an interesting mission in itself, for amateur radio operators there is another interesting facet to the satellite. Unlike most CubeSats which are launched in Low Earth Orbit (LEO), GreenCube was launched higher in Medium Earth Orbit (MEO) which provides a larger radio reception footprint over the earth. The satellite also contains a digital repeater (digipeater) at 435.310 MHz, which allows amateur radio operators to transmit digital radio packets up, and have the satellite repeat the packet back over a wide area footprint on earth. 

Over on his latest video, Matt, from the TechMinds YouTube channel shows us how to receive and decode the packets from the GreenCube digipeater. In his demonstration Matt uses an SDRPlay RSPdx as the receiver, SDR++ as the receiver software, SoundModem as the packet decoder, GreenCube Terminal for displaying the messages, and GPredict for tracking the satellite and compensating for the doppler effect. He also notes that while a directional antenna on a motorized tracker is recommended, he was able to still receive packets with his omnidirectional terrestrial antennas without much issue.

RECEIVING AND DECODING GREENCUBE CUBESAT

MEMESat-1: A Meme-Beaming Cubesat Currently In Development

The Mission for Education and Multimedia Engagement Satellite (MEMESat-1) is planned to be the first meme broadcasting cube satellite ever created. If you aren't down with modern slang and are not familiar with the word "meme", that may be because although first coined in 1976, the modern definition was only added to the Webster-Miriam dictionary in 2015. In the traditional sense a meme is a cultural idea, behavior, style that people can't help but want to share because of how funny/amusing/interesting it is.

But in particular MEMESat-1 wants to broadcast from space the new type of meme definition, which is essentially funny or amusing images/GIFs that internet users and especially youth like to modify and share online through social media. Memes have become a major part of internet youth culture, so this could be an excellent way to speak the language of the next generation and get them interested in space, satellites, amateur radio and building satellite ground stations.

At the moment, the team hopes to launch the satellite by late 2021, and no later than Spring 2022. The satellite will be a cubesat with flash memory containing thousands of meme images that will be broadcast to Earth via a transmitter operating in the UHF 70cm radio band. Enthusiasts on the ground will be able to receive the meme images with a Yagi antenna and we anticipate that RTL-SDRs will be a commonly used receiver. The satellite will also contain an FM UHF/VHF repeater operating in the amateur radio band for ham radio use.

MEMESAT-1 is being developed by letsgo2space.com, a non-profit trying to increase the exposure kids have to STEM topics. Over on Reddit, the founder explains his story and mission:

I went out and started a nonprofit organization, built a website, developed a meme-related anxiety disorder, and am now building a meme-beaming satellite with a group of undergrads at UGA and some industry sponsors. And it’s all for the sake of making a novel meme. We are now fundraising to launch MEMESat-1.

For those who are interested in reading about the trials and tribulations of a 22 year old man-child trying to send memes into space, I’ve included the longer story below.

For my whole university career, I was in search of different work opportunities and internships to see what felt the most fulfilling and to get some of those sweet sweet resume lines. I’ve interned at a plastic factory, the Air Force Research Labs, NASA JPL, and Ball Aerospace. They were all great places filled with awesome people and cool work, but I didn’t feel connected with my work in a way that fulfilled me. So, for the past 3 years me and my buddies have been joking around about building a satellite that beams down memes from space.

Enter MEMESat-1.

While I was working at JPL, me and some buddies got together to toy around with space start-up ideas. We joked more about MEMESat, and bought the memesat.com domain back in 2018. Due to timing and other life events the start-up idea kind of fell off. One of my pals is pursuing his Ph.D, and the other is working as a spacecraft engineer full-time. I on the other hand, still had 2.5 years of school left.

Work on the MEMESat concept slowly came to a halt by the end of 2018, but picked up again in Spring 2019 when I came up with the acronym the Mission for Education and Multimedia Engagement Satellite (MEMESat-1). I kept telling my classmates and friends about the project idea as a joke, but they thought I was being serious and told me to go for it. By May 2019 I had worked out a deal with some universities to use their space, and began building the website. Over that summer, my job left me some spare time, so I started ramping up the social media for MEMESat-1 by posting daily spacefacts to instagram. I also worked on some preliminary design studies to see if the mission would be feasible, and decided that it definitely was. I also spent the summer researching how to form a company, and what the best company structure would be.

In August 2019, I returned to school and began to work on forming a company. Some great profs at GT gave me the advice to start a nonprofit, so I searched for some pro bono legal advice on starting a nonprofit. I took some of the lawyer’s advice and found some willing Directors for the company, and filed to form a nonprofit corporation - called Let’s Go to Space, Inc.

Around that time, I posted to reddit and got a bunch of attention from you guys, so I figured I should work my hardest to make it happen. I spent months emailing every space related company I could find or even think of. I have much more respect now for people that lead telemarketing campaigns, because it is really hard to convince random people over the phone/email to give you large sums of money. Now, I am happily partnered with Ball Aerospace and sponsored by Blue Canyon Technologies. I’m also in talks with some launch providers about a free launch and some help launching my lesson plans/experiment kits to classrooms all over!

We have passed the point of no return and have nowhere to go but upwards. My parents are confused and slightly disappointed that their rocket scientist son has given up any sort of salary in an effort to appease his ‘internet friends’. God bless you magnificent weirdos for keeping me going. Ad Astra Per Memes.

Currently letsgo2space is fundraising and looking for $30,000 to fund the launch of MEMESAT-1. You can either donate any amount or submit a meme for their broadcast database for $1.69 via their website.

MEMESat-1 Logo
MEMESat-1 Logo

Decoding the Lucky-7 Cubesat

Lucky-7 is a Czech cubesat that carries some interesting sensors including a low power GPS receiver, a gamma ray spectrometer and dosimeter and a photo camera. The creators also claim that it is "probably the lowest-cost scientific space mission in human history". It was recently successfully launched and orbited together with the Meteor M2-2 weather satellite and several other small satellites.

"We did not build just another satellite. It is a flying laboratory. The satellite is going to test something that nobody has ever done before. Thanks to our background in electronics, materials and space effects, we implemented commonly used electrical parts from automotive and IoT industry in totally new ways. Gallium Nitride power transistors used in modern electric cars do not contain insulation layer to control its conductivity. That makes them much less vulnerable against the space radiation. We fly the world's first MOSFET-free power supply ever built for small satellites. The LED lighting industry has been used to make composite aluminum radiation shields for us. It is very cheap, lightweight and it naturally increases the mission lifetime," says Jaroslav Laifr, the CEO and founder.

If all goes well, the team will be able to measure the in-situ radiation background by miniature onboard Dosimeter and monitor the health of key subsystems, such as communication or data storage by complete satellite telemetry. The experimental Gamma Spectrometer payload informing about the energy of incident radiation will be able to detect Gamma Ray Bursts from distant galaxies. The platform also contains the VGA camera to demonstrate the data transfer capability. It may capture the first colour images ever taken by Czech satellite, possibly detecting the aurora glow. Such pictures would be greatly utilized for the outreach and inspire a new generation of scientists and engineers.

Daniel Estesvev has recently added a Lucky-7 decoder to gr-satellites, and has uploaded a post explaining some technical details on how he created the decoder. With this decoder, anyone with an SDR and appropriate antenna should be able to receive and decode the telemetry (no word on camera images yet). He writes that "Lucky-7 transmits 4k8 GFSK telemetry in the 70cm band. It uses a SiLabs Si4463 transceiver with a PN9 scrambler and a CRC-16. You must use FM mode to receive this satellite (437.525MHz)."

CubeSat companies like Sky Fox Labs are also tracking the satellite, and are tweeting results.

SignalsEverywhere: Satcom Antennas for L-Band Reception via RTL-SDR + Podcast on the MiTee CubeSat Project

On this episode of SignalsEverywhere on YouTube Corrosive shows off several antennas that can be used for Inmarsat and Iridium satcom reception. His video shows off a commercial Inmarsat branded satlink antenna which is designed to be used on moving ships, a grid dish antenna, a custom QFH iridium antenna made from a repurposed Vaisala radiosonde, a commercial Iridium patch, an older Outernet/Othernet Iridium patch and a custom Iridium patch that Corrosive built himself.

A few days prior Corrosive also released a new episode of his podcast. In this episode he interviewed Derek a student from The University of Michigan who is working on the MiTee CubeSat. The MiTee cubesat is a small experimental satellite that will explore the use of miniaturized electrodynamic tethers for satellite propulsion.

An RTL-SDR and Pi 3 Based Ground Station for Simulated CubeSats

CubeSats are small and light satellites that can these days be built and launched into orbit by almost anyone with a small budget of roughly $40,000. They are a great way for schools and other organizations to get into a space based technology project. A "simulated" CubeSat is one that is not designed to be really launched into space, and is made from low cost hardware. The idea is that simulated CubeSats can be used as tools to help demystify the inner workings of satellites to the public and help CubeSat builders get experience and competence before building the real thing.

A Simulated CubeSat made from a Solar Panel board, Pi Zero, UPS and Tranceiver.
A Simulated CubeSat made from a Solar Panel board, Pi Zero, UPS and Transceiver.

A team from AMSAT have been working on creating open source CubeSat simulator hardware and software. In order to demonstrate the RF capabilities of the simulator a ground station simulator is also required. Recently the team have uploaded instructions on creating a Raspberry Pi and RTL-SDR based ground station.

If you're interested in the CubeSat simulator hardware itself, there was a presentation held back in 2018 that may be of interest to you. According to the presentation somewhere between 30% - 50% of CubeSats fail as soon as they're deployed, so building competence with simulated hardware is a good goal.

2018 AMSAT William A. Tynan W3XO Memorial Space Symposium - Saturday Sessions