Tagged: satellite

Building a DIY Carbon Fibre Yagi Antenna with 3D Printed Parts for 20€

Over on his blog author Manuel a.k.a ‘Tysonpower’ has written about a DIY Carbon Fibre Yagi antenna that he’s built for only 20€. The antenna is very lightweight thanks to a 12mm diameter carbon fibre pipe which is used as the main boom. It also uses 3D printed parts that clamp onto the carbon fibre pipe and hold the metal elements in place. The advantage of the carbon fibre pipe over a PVC one is not only is it lightweight and much easier to hold, but it also stronger, and much less bendy and floppy. The metal elements are welding rods which he found on eBay, and the carbon fibre pipe was sourced cheaply from China with Aliexpress. 

A Yagi is a directional antenna with high gain towards the direction it is pointing. You’ll need to hand point the Yagi in the general direction of the satellite as it passes over, but you can expect much higher SNR readings compared to something like a QFH or Turnstile.

Manuel designed his antenna for 2M satellites (NOAA, Meteor M2, ISS etc), and was able to achieve over 36 dB SNR with an RTL-SDR.com V3 receiver, FM Trap and LNA4ALL on NOAA 18 at a 34° max. pass. He writes that the design is easily modifiable for other frequencies too.

To show off the design, construction and performance of his antenna he’s uploaded two videos to YouTube which we show below. The speech is in German, but even for non-German speakers the video is easily followed


Receiving GOES 16 Weather Satellite Images with the Open Satellite Project

Back in October/November of last year Lucas Teske showed us how to receive weather satellite images from the GOES line of geostationary satellites with an Airspy SDR (and possibly an RTL-SDR too), dish antenna and the decoding software that he created. 

On November 19, 2016 the next generation GOES 16 (aka GOES-R) satellite was launched by NASA. GOES 16 is a little different to the older GOES satellites as it has better sensors and is capable of capturing and transmitting a new image every 15 minutes which is quite fast. Thus a different and higher bandwidth RF transmission protocol called HRIT (High Rate Information Transfer) is used, compared to the LRIT (Low Rate Information Transfer) signal used on the older satellites.

Once the satellite started transmitting in January 2017, Lucas got to work on trying to create a decoder for the new satellite. After noticing some discrepancies between the published HRIT specs and the actual signal, Lucas sent off an email to NOAA and actually received an email back with the full specifications. With this information he was able to update his Open Satellite Project code and start decoding images from GOES 16.

The images being sent right now seem to just be relays of other similar satellites like Himawari-8 and Meteosat, as it seems that they are still testing the satellite. The relayed images received via GOES 16 received by Lucas can be seen on the Open Satellite Project twitter feed and on Lucas’ personal twitter feed.

Full disk image received via GOES 16, relayed from the Himawari-8 satellite.
Full disk image received via GOES 16, relayed from the Himawari-8 satellite.
Weather data received via GOES 16.
Weather data received via GOES 16.

Receiving GOES Weather Satellite Images with a Small Grid Antenna and an Airspy Mini

GOES is an L-band geosynchronous weather satellite service that can be received typically with a satellite dish. It produces very nice full disk images of the earth. In the past we’ve posted about Lucas Teske’s work in building a GOES receiving system from scratch (including the software decoder for Airspy and RTL-SDR receivers), devnullings post about receiving GOES and also this talk by @usa_satcom on decoding GOES and similar satellites.

Over on Twitter @usa_satcom has been tweeting about his experiments where he has been successfully receiving GOES L-Band weather satellite images with a small grid antenna and an Airspy Mini. In a Tweet he writes that the antenna is an $85 USD Hyperlink 1.9 GHz 22 dBi Grid Antenna made by L-com. A grid antenna may be more suitable for outdoor mounting for many people as they are typically lighter, smaller and more suitable for windy and snowy conditions. As the GOES satellite is in geosynchronous orbit, no tracking motor or tracking mount is required.

[tweet https://twitter.com/usa_satcom/status/820793963988668416 align=”center”] [tweet https://twitter.com/usa_satcom/status/820781116764266496 align=”center”] [tweet https://twitter.com/usa_satcom/status/820773345956200449 align=”center”]

Outernet Patch Antenna Pan-Tilt Servo

Over on YouTube user Tomi Simola has uploaded a video showing his servo based Outernet satellite antenna tracker. Outernet uses L-band geostationary satellites which means that they are at a fixed position in the sky. Optimal reception of the Outernet and other L-Band satellite signals can be obtained by pointing the patch antenna towards the satellite.

Tomi wanted an easy way to remotely switch the antenna to point at one of two geostationary satellites, Alphasat at 25E which has the Outernet signal and Inmarsat at 64E which has more services like AERO and STD-C. Another potential use of his tracker might be for tracking L-Band satellite while in a moving vehicle such as a car or boat. 

To automatically point the Outernet L-band patch antenna Tomi used a commonly found Pan-Tilt servo mounted inside an waterproof enclosure. On the servo is a 3D printed mount which the patch antenna is attached on. An Arduino Nano with Bluetooth module allows control of the servo.

The video below shows a test of the system, over on Reddit he has written a comment explaining the project and over on Imgur he’s uploaded some photos of the construction.


Receiving the Recently Launched BY70-1 Satellite

BY70-1 is a Chinese amateur Cubesat satellite which was recently launched on December 29, 2016. It is expected to stay in orbit for only 1 – 2 months due to a partial failure with the satellite releasing into an incorrect orbit. The purpose of the satellite is for education in schools and for amateur radio use. The receivable signals include an FM repeater and BPSK telemetry beacon both of which can be received at 436.2 MHz. The telemetry beacon is interesting because it also transmits images from an on board visible light camera. These signals can easily be received with an RTL-SDR or other SDR with an appropriate antenna.

Over on his blog Daneil Estevez has been posting about decoding these telemetry images. He’s been using telemetry data collected by other listeners, and the gr-satellites GNU Radio decoder which is capable of decoding the telemetry beacons on many amateur radio satellites. So far the decoded images haven’t been great, they’re just mostly black with nothing really discernible. Hopefully future decodes will show better images.

If you want to track the satellite and attempt a decode, the Satellite AR Android app has the satellite in its database.

Not many people seem to have gotten telemetry decodes or images yet, but below we show an image decoded by  on Twitter.

BY70-1 Image Decoded by @bg2bhc
BY70-1 Image Decoded by @bg2bhc

Building a Wideband Vivaldi Antenna for SDR Use

Vivaldi’s are linearly polarized broadband antennas that have a directional radiation pattern at higher frequencies. The high end SDR manufacturer RF Space produces their own Vivaldi antennas made from PCB boards which they sell online. The larger the antenna, the lower its receiving frequency, and ones that go down to about 200 MHz are almost the size of a full adult person. But all sizes receive up to 6 GHz maximum. Typically smaller versions of Vivald antennas have been used in the past for L-Band satellite reception.

Over on his blog KD0CQ noted that he always had trouble trying to purchase a Vivaldi from RF Space because they were too popular and always out of stock. So he decided to try and build his own out of PCB boards. On this page he’s collected a bunch of Vivaldi cutout or transfer images. On his second page he shows a Vivaldi antenna that he built out of PCB material, just by using scissors and semi-rigid coax. With the Vivaldi placed outdoors he’s been able to successfully receive and decode L-Band AERO on his Airspy Mini even without an LNA. 

KD0CQ writes that he’ll update his blog soon with more results.

Simple Vivaldi antenna by KD0CQ cut out of PCB board.
Simple Vivaldi antenna by KD0CQ cut out of PCB board.

Radio For Everyone: An Easy Homemade Outernet Antenna, More FlightAware Pro Stick Plus Results

Akos from the radio for everyone blog (formerly known as the rtlsdr4everyone blog) has uploaded two new posts. On the first post he shows some further tests on the new FlightAware Prostick plus. The Prostick is an RTL-SDR that contains a built in LNA and the Prostick plus adds an additional SAW filter on the stick. For him the Prostick Plus works significantly better than the regular Protstick + external FA cavity filter and also gets about twice the ADS-B reception reports as our V3 which does not use an additional internal LNA. Next week we hope to release our own review of the Prostick Plus, and we’ll hopefully be able to show and explain why some people see better performance with the plus and why some instead see degraded performance.

In his second post Akos shows a tutorial on building an easy helical antenna for Outernet reception. The antenna is constructed from readily available household materials such as a soda bottle, coax cable, electrical tape and a cookie tin. With the cookie tin used he was able to get a SNR reading between 7 – 9 dB, which is pretty good considering that only 3 dB is required for Outernet decoding to work.

Outernet hardware plus the homemade helical antenna made by Akos.
Outernet hardware plus the homemade helical antenna made by Akos.

Two Videos That Show How To Set Up An Outernet Receiver

Outernet is a relatively new satellite based file delivery service which can be received with an RTL-SDR dongle. They continuously send out useful data like weather reports, news, APRS data as well as files like Wikipeda pages, images, videos and books. Previously we posted a tutorial that shows how to set up an Outernet receiver here.

If you instead prefer video tutorials, then two YouTube channels have uploaded Outernet set up tutorials. The first tutorial is by MKme Lab. In this video they set up Outernet using a Raspberry Pi and a Lipo battery for portable operation. Once setup he shows the Outernet browser and weather app in action.


The second video is by John’s DIY Playground and is similar, but goes a bit deeper into setting up the software on the Raspberry Pi and shows how to point the patch antenna towards the satellite.