Tagged: satellite

Imaging TV Satellites with a DIY Radio Telescope

Over on the saveitforparts YouTube channel the creator has uploaded a video showing how he was able to image geosynchronous satellites with his modified motorized RV satellite dish. The idea is to scan the sky using the motorized dish, taking Ku-band RF power readings at each point in the sky. The result forms a heatmap image of satellite transmissions in the sky. For the most part, the satellites detected are TV satellites and they are at known positions in the sky.

However, in one of his recent scans saveitforparts appears to have detected an unknown satellite just outside of the geostationary plane. He goes on to discuss what it could have been, noting that it is most likely to be the AMSC 1 telecommunications satellite.

Recently I spotted a strange "UFO" with my homemade radio telescope / microwave imager. I've used this imager before to spot television satellites in geostationary orbit, but this unknown object was something new to me.

Spoiler Alert: I was able to determine that I'm probably seeing a geosynchronous (but not geostationary) satellite in an inclined / elliptical orbit. Specifically, I think this is the AMSC-1 telecom satellite, which is in a type of orbit designed to cover high latitudes like Northern Canada.

These types of satellites don't seem to show up too often on my telescope / imager setup, since they're not as common and aren't usually aimed directly at my location. This is the first time I've managed to spot one (if that's what I'm seeing), so it seems kind of rare to catch it with this particular equipment!

Folks might also ask if this "UFO" could be the sun or moon producing microwave signals, but those were both off to the left of the scan, not where the mystery signal showed up. It's also probably not a reflection / side lobe / "lens flare", I do get those, but they show up as rings around the main signals, and in fact this mystery signal has its own faint ring around it. Since my dish takes 3-4hrs to do a full scan, this also isn't something fast like a plane or low-orbit satellite as those don't show up on my imager (I'm essentially taking a very long time exposure).

I'm still planning to upgrade / rebuild this mini radiotelescope device in the future, hopefully with more flexibility to pick up different frequencies. That should let me see even more satellites (and maybe other space stuff!).

Mysterious Space Object Detected With DIY Radio Telescope

Building a DIY Portable 137 MHz Yagi Antenna for LRPT

Over on his YouTube channel dereksgc has uploaded the next video in his series on satellite reception. In this video he shows how to build a Yagi antenna tuned for 137 MHz, which is great for receiving NOAA APT and Meteor M2-3 LRPT. Note that a Yagi antenna will give you stronger reception compared to a turnstile, QFH or V-Dipole, but as it is a directional antenna you will need to manually point it towards the satellite as it passes over your location.

For Meteor M2-3 LRPT, a Yagi antenna may be beneficial, as it appears this satellite is having some issues with signal strength, due to a possibly defective antenna that did not fully unfold on the satellite.

The Yagi antenna design is a four element design, with one reflector, two directors and one driven dipole element. The physical construction consists of a piece of wood for the boom, brass welding rods for the elements, and a terminal block for the active dipole element. 3D printed handles are added for easy holding and the RTL-SDR and LNA sit directly on top of the boom.

DIY portable 137 MHz yagi antenna (for good LRPT) || Satellite reception pt.13

Receiving the STEREO-A Solar Orbiting Satellite with a 66cm Dish

STEREO-A is a satellite launched in 2006 which is orbiting the sun and used for making solar observations. Usually it is so far away that massive deep space satellite dish's are required to receive this satellite. However for the first time since it's launch, STEREO-A's orbit is taking it close enough to Earth for small home satellite ground stations to be able to receive the data and download some images of the sun. 

Over on his Blog Scott Tilley has written up an article showing how it is now (temporarily) possible to receive and decode STEREO-A with a small 66cm dish. The satellite will be closest to Earth on August 17 2023, however Scott notes that since mid June the signal has already been dramatically increasing.

Scott's blog post explains the orbit, how the satellite transmits at 8.443.579 GHz, and shows his feed and hardware setup which involves a few filters, LNAs, GPS reference clock, a mixer and an Ettus B200 SDR. He also notes how he uses a modified motorized telescope mount to automatically track the satellite as it moves through space.

The rest of Scott's post explains how to use the "CCSDS Turbo R6 K8920" Decoder in SatDump to decode the signal and recover images, noting that some tuning of parameters was required and that because of the slow data rate it can take hours to get even one megabyte of data. He goes on to acknowledge everyone who figured out how to decode the image and telemetry data from the satellite, some observations on the STEREO-A beacon and finally some amazing images and animations he's received.

A weak signal from STEREO-A received back in mid June 2023
Image of the sun from STEREO-A

Receiving Images from the US DoD Coriolis Satellite

Over on dereksgc's YouTube channel another recent video from his satellite decoding series shows how to download images from the Coriolis satellite, a US Department of Defense satellite launched in 2003, that is among other uses designed to measure wind speed and direction from space using a radiometer.

The entire history of an orbit is only downlinked in the S-band when over an official ground station, however it also has a 'tactical' downlink for live data that the US Navy uses. As the data is unencrypted, with a satellite dish, 2.2 GHz feed, LNA and a software defined radio like the HackRF, anyone can receive the data.

In his video dereksgc explains the satellite, shows his hardware, and demonstrates reception. He then passes the recording into SatDump which results in the images. The images themselves are nothing interesting to look at, as they are produced by a sensor designed to measure wind. But dereksgc shows how multiple images can be composited into something a little more interesting.

Receiving images from a US DoD satellite (Coriolis) || Satellite reception pt.9

Video on Meteor M2-3 LRPT, HRPT and Telemetry Reception

Over on YouTube dereksgc has another video on Meteor M2-3 reception. In the video Derek goes over the history of Meteor M launches and then goes on to test reception of the 3.4 GHz telemetry signal which he recorded early after the satellites launch.

The next day he sets up 1.7 GHz HRPT reception using a hand tracked satellite dish and is successful as receiving it. He then goes on to test 137 MHz LRPT reception with a V-dipole antenna and RTL-SDR and is also successful. Finally he decodes the recordings using SatDump and is able to get some great images.

Derek also notes that there might be a problem with the LRPT antenna which could explain some reports of poor reception at some elevations of the satellite. He notes that it seems likely that the QFH antenna extension process on the satellite didn't extend fully or at all.

Receiving Meteor-M N2-3 LRPT and HRPT || Satellite reception pt.11

Saveitforparts: Receiving Images from the new Russian Satellite Meteor M2-3

A few days ago we posted about the successful launch and deployment of the latest Russian Meteor M2-3 weather satellite. The satellite is currently actively transmitting LRPT weather images.

Over on his YouTube channel, "saveitforparts" has uploaded a video showing how he received images from the new satellite using his RTL-SDR. His method involves first recording the signal pass on a Raspberry Pi with rtl_fm, and then passing that wav file into SatDump for decoding and image generation.

We note that it is also possible to directly live decode the pass using SatDump, however a Raspberry Pi may be a little too slow to run the GUI version of SatDump. Instead you could use rtl_tcp on the Pi and run SatDump on a networked PC, or simply run the RTL-SDR and SatDump on the PC or a more powerful device like an Orange Pi 5.

Ultimately he experiences some unresolved problems with the decoding process, but is able to end up with a decent image.

Grabbing Images From New Russian Satellite (Meteor M2-3)

An RTL-SDR telemetry decoder for the soon to be launched MRC-100 PocketQube Satellite

Thank you to Zoltan Doczi (HA7DCD) for submitting news about the MRC-100 Hungarian PocketQube Satellite that is scheduled to launch on a Falcon 9 on June 12. A PocketQube is smaller than a standard CubeSat as it is sized at only 5x5x15cm. Zoltan notes that the MRC-100 is the successor to the SMOG-1 satellite which we posted about back in March 2021. The satellite is named to honoring the 100th year anniversary of the HA5MRC Ham Radio Club at the Budapest University of Technology.

To help with decoding the Telemetry on the satellite an RTL-SDR based telemetry receiver was created by Peter and Miklos, and Levente HA7WEN has created an installation script for Raspberry Pi's and Linux PC's which installs OpenWebRX along with the satellite receiver software.

The satellite should be receivable with a simple satellite antenna, such as a handheld Yagi, Turnstile, Dipole or quadrifilar-helix antenna. It will be transmitting telemetry at 436.720 MHz. If you have a dish and tracking equipment for it, there is also a high speed downlink at 2267.5 MHz. Like SMOG-1 the satellite carries a sensor that is designed to measure human caused electromagnetic pollution. It also carries a camera and an AIS receiver for tracking marine vessels.

The MRC-100 CubeSat

TechMinds: Receiving and Decoding Packets from the GreenCube Cubesat Digipeater

GreenCube is a CubeSat by the Sapienza University of Rome, and it is designed to demonstrate an autonomous biological laboratory for cultivating plants onboard a CubeSat.

While this is an interesting mission in itself, for amateur radio operators there is another interesting facet to the satellite. Unlike most CubeSats which are launched in Low Earth Orbit (LEO), GreenCube was launched higher in Medium Earth Orbit (MEO) which provides a larger radio reception footprint over the earth. The satellite also contains a digital repeater (digipeater) at 435.310 MHz, which allows amateur radio operators to transmit digital radio packets up, and have the satellite repeat the packet back over a wide area footprint on earth. 

Over on his latest video, Matt, from the TechMinds YouTube channel shows us how to receive and decode the packets from the GreenCube digipeater. In his demonstration Matt uses an SDRPlay RSPdx as the receiver, SDR++ as the receiver software, SoundModem as the packet decoder, GreenCube Terminal for displaying the messages, and GPredict for tracking the satellite and compensating for the doppler effect. He also notes that while a directional antenna on a motorized tracker is recommended, he was able to still receive packets with his omnidirectional terrestrial antennas without much issue.

RECEIVING AND DECODING GREENCUBE CUBESAT