New Accessibility Plugin for SDR#

In the past we've seen several SDR# plugins released by Eddie MacDonald, and now thanks to recent updates to the core of SDR#, he's been able to work on and release a new accessibility plugin for SDR#. Eddie writes -

I have created a new plugin which provides keyboard shortcuts, an on screen display and a new improved toolbar for the new native toolbar area that Prog has provided to plugin developers.

There are many new and improved toolbar buttons available.

Many, many keyboard shortcuts including the ability to directly enter the frequency easily from the keyboard.

I am currently working on incorporating a screen reader into the plugin to aid the blind in using SDR#.

The plugin is available from his website at https://sdrplugins.com/downloads

New SDR# Accessibility Plugin
New SDR# Accessibility Plugin
Keyboard Shortcuts in the Accessibility Plugin
Keyboard Shortcuts in the Accessibility Plugin

DARPA Spectrum Collaboration Challenge $2 Million Dollar Championship Video

DARPA (Defense Advanced Research Projects Agency) has recently released video from their Spectrum Collaboration Challenge Championship Event where team GatorWings took home a two million dollar prize. In the original DARPA grand challenge teams competed to produce an autonomous car that can get through an obstacle course. In this spectrum challenge DARPA poses the questions, what if there was no FCC to control the band plan, and how do we make more efficient use of a scarce spectrum?

Given those questions the goal is for software defined radios driven by artificial intelligence's created by each team to autonomously find ways to manage and share the spectrum all by themselves. The AI's are required to find ways to listen and learn the patterns of other AI SDRs using differing wireless standards all of which are competing for the same slice of spectrum at the same time. The competition asks the AI's to provide simulated wireless services (phone calls, data link, videos, images) during a simulation run with all the AI's running at once. Whichever AI is able to provide the most stable services and at the same time share the spectrum fairly with the other AI's wins.

On October 23, 2019, ten teams of finalists gathered to compete one last time in the Championship Event of DARPA's Spectrum Collaboration Challenge (SC2), a three-year competition designed to unlock the true potential of the radio frequency (RF) spectrum with artificial intelligence. DARPA held the Championship Event at Mobile World Congress 2019 Los Angeles in front of a live audience.

Team GatorWings from University of Florida took home the $2 million first prize, followed by MarmotE from Vanderbilt University in second with $1 million, and Zylinium, a start-up, in third with $750,000.

Throughout the competition, SC2 demonstrated how AI can help to meet spiking demand for spectrum. As program manager Paul Tilghman noted in his closing remarks from the SC2 stage: "Our competitors packed 3.5 times more wireless signals into the spectrum than we're capable of today. Our teams outperformed static allocations and demonstrated greater performance than current wireless standards like LTE. The paradigm of collaborative AI and wireless is here to stay and will propel us from spectrum scarcity to spectrum abundance."

The highlights video is shown below, and the full two hour competition stream can be viewed here

Highlights from the Spectrum Collaboration Challenge Championship Event

The competition was run on the DARPA Colosseum, the worlds largest test bed for performing repeatable radio experiments. Capable of running up to 128 two channel software defined radios with 3 peta-ops of computing power it allows experimenters to accurately simulate real world RF environments. It works by connecting special "channel emulator" RF computing hardware to each physical SDR, which can emulate any RF environment.

SDRplay Release the RSPdx: Replaces the RSP2/pro, Filtering & Intermod Improvements, 1kHz to 2 MHz HDR Mode

The RSPdx
The RSPdx

SDRplay have just released their new SDR that they're calling the RSPdx. This is their new top end product which replaces the older RSP2/pro line. The RSPdx is designed for high performance DX reception and they write that it achieves this with additional filtering, improved intermodulation performance, a DAB notch filter, additional attenuation steps, and a new high dynamic range for frequencies under 2 MHz.

Pricing is £159 GBP or $199 USD (excluding taxes). It doesn't yet appear to be for purchase, but they note that it will be fully released within the next few weeks.

The RSPdx is a replacement for the highly successful RSP2 and RSP2pro SDR receivers, which have been extensively redesigned to provide enhanced performance with additional and improved pre-selection filters, improved intermodulation performance, the addition of a user selectable DAB notch filter and more software selectable attenuation steps .

The RSPdx , when used in conjunction with SDRplay’s own SDRuno software, introduces a special HDR (High Dynamic Range) mode for reception within selected bands below 2MHz. HDR mode delivers improved intermodulation performance and fewer spurious responses for those challenging bands.

The SDRplay RSPdx is a single-tuner wideband full featured 14-bit SDR which covers the entire RF spectrum from 1kHz to 2GHz giving up to 10MHz of spectrum visibility. It contains three antenna ports, two of which use SMA connectors and operate across the full 1 kHz to 2 GHz range and the third uses a BNC connector which operates up to 200MHz.

The RSPdx also features a 24 MHz ‘plug and play’ reference clock input which allows the unit to be synchronised to an external reference clock such as a GPS disciplined oscillator (GPSDO)

This is one of many video guides from SDRplay - makers of the RSP family of SDR radios. See the full list of SDRplay videos and applications documents on: https://www.sdrplay.com/apps-catalogue/

SDRplay is a UK company. The RSP SDR receivers are made in the UK and can be purchased for worldwide delivery directly from http://www.sdrplay.com/ (click on purchase and select your country to view shipping costs) or you can buy from any of our worldwide resellers listed here: http://www.sdrplay.com/distributors/ Many of the resellers offer local free shipping and/or local language technical support.

SDRplay Product Comparisons
SDRplay Product Comparisons

Mike Ladd (KD2KOG) who works for SDRplay Technical services has provided the following demonstration video.

Major Announcement... The RSPdx from SDRplay.

Independent reviewer TechMinds has also uploaded a new hardware and software overview and unboxing video as well.

NEW: SDRPlay RSPdx 1kHz - 2GHz HDR SDR Receiver

In Testing: Customized Drivers for RTL-SDR Blog V3 SDRs

We've recently released a modified version of the Osmocom RTL-SDR drivers that has a few enhancements particularly for RTL-SDR Blog V3 units. The changes merge improvements to L-Band PLL locking performance which may be necessary for operating units in high ambient heat environments and the RTL_TCP performance enhancements by Stephen Blinick.

If you want to toggle the bias tee ON/OFF in SDR#, we've also made use of the "Offset Tuning" checkbox in the RTL-SDR settings. This checkbox is unused for R820T2 RTL-SDRs, so we've added code that will toggle the bias tee ON/OFF with this checkbox. 

In addition we've also made use of some unused EEPROM flags to create a method that allows you to force the bias tee to be always ON if a certain EEPROM flag is set. You can also force direct sampling mode with another EEPROM flag. Note that these force flags will only work if you are using these drivers.

A Windows release is available on the Github Releases. To use with SDR#, simply replace the rtlsdr.dll file in the SDR# folder with the one in the Release.zip file. To install on Linux, follow the instructions in the Readme, and remember to follow the instructions to remove librtlsdr-dev if you previously installed drivers via the package manager.

If there are any problems or feedback, please open an issue on GitHub. List of changes shown below.

1) VCO PLL current fix - Improves stability at frequencies above ~1.5 GHz https://www.rtl-sdr.com/beta-testing-a-modified-rtl-sdr-driver-for-l-band-heat-issues/

2) RTL_TCP ring buffer enhancement by Stephen Blinick https://www.rtl-sdr.com/significantly-improving-rtl_tcps-performance-with-ring-buffers/

3) Enabled direct sampling for rtl_tcp

4) rtl_biast program added, including the ability to turn on/off any GPIO

5) Hack to force the bias tee to always be on by setting the unused IR endpoint bit to 0 in the EEPROM. Example to force the BT to be always ON "rtl_eeprom -b y", to remove forced BT "rtl_eeprom -b n"

6) Hack to force direct sampling to be always on by setting the unused remote-enabled bit to 1 in the EEPROM. Example to force direct samping always "rtl_eeprom -q y". To remove forced direct sampling "rtl_eeprom -q n"

7) Repurposed "offset tuning" to toggle bias tee ON/OFF. We can now use the "offset tuning" button in SDR# and other programs to toggle the bias tee if there is no specific button in the GUI.

GNU Radio Conference 2019 Videos now up on YouTube

GNU Radio Conference 2019 (GRCon19) was a conference about GNU Radio and projects based on GNU Radio that was held back in September 2019. GNU Radio is an open source digital signal processing (DSP) toolkit which is often used in cutting edge radio applications and research, and to implement decoders, demodulators and various other SDR algorithms. 

Yesterday videos from all the GRCon19 talks were uploaded to YouTube. The talks consists of many high level and cutting edge SDR topics. All talks can be found on their GRCon19 YouTube playlist, and matching slides on the GRCon19 website presentations page.

A list of the talk titles is pasted below.

  • Huntsville's Connection to Space
  • GNU Radio Project Update
  • Mega Hertz, Mega Samples, Mega bits, Mega Confusing
  • Man or Machine?: Developing a Turing Test for Radio Intelligence
  • UHD Four-O
  • Striving for SDR Performance Portability in the Era of Heterogeneous SoCs
  • Fixing the E310 Bottleneck: Implementing a High-Rate Heterogeneous FPGA DMA 
  • Determining Optimized Radio settings for specific waveforms
  • Software Defined Everything
  • GNU Radio Beyond 3.8 - A Technical Outlook
  • GNU Radio Enhancements for Space-Based Research
  • A decade of gr-specest -- Free Spectral Estimation!
  • Open Source Licensing
  • Spectrum Monitoring Network: Tradeoffs, Results, and Future Directions
  • The Future of Digital RFICs
  • Phase Synchronization Techniques
  • Synchronization: Core Concepts and Applications
  • AI and SDR: Software Meets Hardware Again...
  • Building a radio with M2K and spare parts
  • How we talked from the Moon: the Apollo communication system
  • gr-satellites: a collection of decoders for Amateur satellites
  • gr-iio: Nuances, Hidden Features, and New Stuff
  • Open Sourcing the Search for Extraterrestrial Intelligence
  • Multi-Vehicle Map Fusion Using GNU Radio
  • SigMF.
  • GPUDirect + SDR: How to Move One Billion Samples per Second over PCIe
  • Multichannel phase coherent transceiver system with GNU Radio interface
  • Exponent: Arbitrary Bandwidth Receiver Architecture
  • UHD Streaming with DPDK: Raising the Throughput Ceiling with Drivers in User Space
  • USRP based X-band Digital Beam Forming Synthetic Aperture Imaging Radar
  • The GNU Radio PDU Utilities
  • MetaSat: Metadata for Good
  • Enabling Precise Timing Control in SDRs
  • Managing Latency in Continuous GNU Radio Flowgraphs
  • VLBI with GNU Radio and White Rabbit
  • Performance Evaluation of MIMO Techniques With an SDR-Based Prototype
  • UAS Community Testbed Architecture for Advanced Wireless Research with Open-Source SDRs
  • Demonstration of GNU Radio Compatibility with a NASA Space Communications
  • Network Modem (GRCON2019)
  • Prototyping LTE-WiFi Interworking on a Single SDR Platform
GNU Radio Conference 2019
GNU Radio Conference 2019

Mike Tests our RTL-SDR Blog L-Band Active Patch Antenna on an SDRplay RSP1a

Over on YouTube Mike Ladd (KD2KOG) from the SDRplay technical support team has uploaded a YouTube video showing him running our recently released RTL-SDR Blog L-Band Active Patch antenna on an SDRplay RSP1a. In the video he receives and decodes AERO signals from his car with his RSP1a powering the active patch antenna via the built in bias tee.

If you didn't already hear, we recently released an active (amplified + filtered) high performance patch antenna designed for receiving L-Band satellites such as Inmarsat, Iridium and GPS. The patch is designed to be easily mountable outside on a window, surface, stick, tree branch etc as it comes with easy to use mounting solutions and extension coax, and is enclosed in a fully weather proof plastic cover. If you're interested the product is available over on our store for US$39.95 with free shipping.

You also might want to keep an eye on Mike's YouTube channel, as he notes that in the yet to be released part 2 video he will be giving away the antenna in a competition.

RTL-SDR Blog L-band patch antenna part 1

Tutorial on Performing a Replay Attack with a HackRF and Universal Radio Hacker

Over on YouTube channel Tech Minds has uploaded a short tutorial video that shows how to perform a replay attack with a HackRF and the Universal Radio Hacker software. A replay attack is when you record a control signal from a keyfob or other transmitter, and replay that signal using your recording and a TX capable radio. This allows you to take control of a wireless device without the original keyfob/transmitter. This is easy to do with simple wireless devices like doorbells, but not so easy with any system with rolling codes or more advanced security like most car key fobs.

In the video Tech Minds uses the Universal Radio Hacker software to record a signal from a wireless doorbell, save the recording, replay it with the HackRF, and also analyze it.

Universal Radio Hacker - Replay Attack With HackRF

SignalsEverywhere: Testing Wideband PCB Antennas from Hex and Flex

In the past we've posted twice about Hex and Flex who has been designing and selling various types of wideband PCB antennas. Previously we saw his wide band vivaldi antenna, and his wideband 400/800 MHz+ spiral antennas.

Now on the latest episode of SignalsEverywhere host Corrosive gives us a brief review of the Hex and Flex antennas, and goes on to demonstrate the spiral antenna in action. In his tests he was able to receive Inmarsat AERO, 433 MHz tire pressure monitors (TPMS), 300 MHz APRS signals, 300 MHz SATCOM, 800 MHz P25 and 1090 MHz ADS-B aircraft tracking signals with the spiral antenna and our RTL-SDR Blog Wideband LNA.

The video also comes with a 20% off promotion code for the Hex and Flex Tindie store. Simply enter the code "signalseverywhere" at checkout.