Tagged: FPV

Measuring the SWR of FPV Antennas with an RTL-SDR

FPV stands for 'First Person View', and is a term used to describe the hobby of flying remote controlled aircraft entirely via the view from a wireless camera that transmits live video to the pilots screen or video goggles.

Part of the FPV hobby is to not only enjoy flying, but also to tweak the wireless video equipment for maximum range and reliability. This involves measuring the SWR characteristics of FPV antennas. SWR is a metric that describes how well the impedance of an antenna is matched with the receiver at a certain frequency. Poor SWR results in additional signal loss on top of cable and connector loss. We note that SWR is only one antenna metric, and doesn't take into account radiation pattern and antenna gain which is often more important, but it is the easiest metric to measure and control, and should give you some idea as to if an antenna was designed and tuned properly.

As FPV hobbyists are often not hams or radio professionals, most don't have access to the equipment required to measure SWR. So over on his YouTube channel bonafidepirate shows how he's been using a cheap RTL-SDR, noise source and RF Bridge to measure the SWR of his FPV antennas. The process is similar to the one shown in our tutorial, but he uses the Spektrum software which allows you to measure SWR entirely within the software itself.

In the video bonafidepirate goes over the required hardware, software and the setup, and then demonstrates several SWR scans of different FPV antennas.

DIY VSWR Meter for FPV, Lets test some antennas!

Monitoring Drone FPV Frequency Usage with a USRP Software Defined Radio

Over on YouTube balint256 (Balint), a researcher at Ettus (creators of the USRP line of software defined radios) has uploaded a video showing how he is using his USRP to help with frequency management at FPV time trial racing events. FPV a.k.a First Person View is a term used to describe the act of flying a remote controlled aircraft such as a quadcopter with an onboard camera that transmits live video down to the pilot. FPV racing is a new sport where pilots race FPV controlled drones around a track.

One important technical challenge at these events is frequency management. FPV drones use many frequencies at around 2.4 GHz for control and 5.8/2.4/1.3 GHz for video. With many drones in the air it is important that frequencies are managed appropriately so as to not jam each others signals.

To try and solve this problem Balint has been using GNU Radio coupled with a USRP X310 software defined radio to get very wide band RF spectrum waterfall views of the 2.4 and 5.8 GHz bands. In the waterfalls he is able to see when control signals and video signals are transmitted and at what frequency, and is able to tell if any are overlapping and jamming each other.

SDR Wideband Spectrum Monitoring for Drone FPV Frequency Management

In addition to this, Balint has also been working on his custom software defined radio based digital video downlink. Back in March we posted about his earlier work on this concept. In the video Balint demonstrates his drone with an on board USRP E310 which is used to send a custom 4.2 Mbps video downlink.

SDR digital video downlink (custom drone FPV) with E310 + webcam

Using a USRP E310 for Digital Video Downlink and Scanning on a Drone

Balint, one of the researchers at Ettus Research (the company behind the USRP range of software defined radios) has recently uploaded a video to YouTube showing one of his projects where he is prototyping the use of a digital signal for transmitting digital FPV video on a drone. The drone carries a USRP E310 SDR and transmits a QPSK video down developed in GNU Radio to a receiver on the ground.

FPV strands for “first person view” and is a growing hobby where remote controlled aircraft such as quadcopter drones are flown in first person view using live video from an on board camera.

Drone + SDR: USRP E310 real-time digital video downlink (teaser)

In another video balint also shows how the on board E310 can be used to transmit frequency scan FFT data via a WiFi link. This can be very useful for getting an antenna up high enough to get good reception for a scan.

Drone + SDR: USRP E310 airborne spectrum monitoring (teaser)

RTL-SDR used as a Cheap Real Time Spectrum Analyzer

The rtl-sdr dongle can be been used as a super cheap $20 real-time spectrum analyzer. This is great as commercial spectrum analyzers can run from hundreds to thousands of dollars.

First of all, SDRSharp and other SDR software packages are essentially spectrum analyzers themselves. They all have real time frequency spectrum and waterfall viewers. They are however, not exactly portable.

A portable spectrum analyzer is shown by amateur radio hobbyist and blogger OZ9AEC. He has combined an rtl-sdr dongle, a low cost portable Linux computer known as Beaglebone, and an LCD screen, and turned them into a portable spectrum analyzer. OZ9AEC shows a video demo of his project in this video.

rtlizer demo

A cheap spectrum analyzer can be useful in many situations. For example, Marek Wodzinski uses the rtl-sdr as a spectrum analyzer for optimizing his FPV radio transmissions. Many other people seem to be interested in a rtl-sdr for this purpose too.

A Google groups post discussing use of the rtl-sdr dongle as a spectrum analyzer is here.