Tagged: moon bounce

Building A Giant $200 3D Corner Reflector Antenna for GOES, Moon Bounce and Pulsar Detection

A corner reflector antenna is basically a monopole antenna with a metallic 'corner' reflector placed behind it. The reflector helps the monopole collect signals over a wider aperture resulting in signals coming in stronger from the direction that the corner is pointing at. In past posts we've seen a homemade tinfoil corner reflector used to improve reception of the generic stock RTL-SDR monopole antenna, and a larger one was used in a radio astronomy experiment to detect a pulsar with an RTL-SDR.

Recently The Thought Emporium YouTube channel has uploaded a video showing how to build a large 2 meter 3D corner reflector out of readily available metal conduit pipes and chicken wire. While the antenna has not been tested yet, they hope to be able to use it to receive weather satellite images from GOES-16, to receive moon bounce signals, to map the Hydrogen line and to detect pulsars. 

Building a Giant 2m Corner Reflector Antenna For Less than $200 (For Goes-16, Pulsars and More!)

Comparing the RTL-SDR, FunCube PRO Plus and SDRplay on Moon Bounce/EME Reception

Moon Bounce or “Earth Moon Earth” (EME) is an amateur radio activity where people attempt to transmit a signal towards to the moon, and listen to the reflected signal. In some cases a separate transmitter is not needed, as an already powerful constant transmitter like the GRAVES radar in France can be used.

Over on his YouTube channel user cqpy2rn has uploaded a video showing his moon bounce reception of the GRAVES radar using an eleven element yagi antenna. He compares the reception with an RTL-SDR, FunCube PRO Plus and SDRplay. He writes:

+++ Nooelec model NESDR Smart (RTL-SDR) +++
GOODs: Price $20, frequency stability 0.5ppm tcxo, aluminum case, firm sma antenna connector, better dynamic range than regular-cheaper RTL dongles. Easy gain adjustment.
BADs: No pass filters, freq coverage from 24MHz to 1.7GHz, poor dynamic range (moderate de-sense with near strong signals)

+++ FunCube PRO PLUS – FCDPP +++
GOODs: freq coverage from 150KHz to 2GHz, pass saw filters, frequency stable 0.5ppm tcxo, easy gain adjustment, acceptable dynamic range.
BADs: Plastic case, fragile sma connector, just 192KHz wide spectrum view, price $160.

+++ SDRPlay +++
GOODs: Frequecy coverage from 10KHz to 2GHz, firm SMA connector, pass saw filters, up to 8MHz wide spectrum view, acceptable dynamic range.
BADs: Plastic case, legacy printer USB connector, frequency drift during warm up, difficult gain adjustment

CONCLUSION: In essence all these have the same “DNA”, they were made from digital TV tuner chips, comparisons produce very similar RX practical results, the RTL suffers due the lack of internal filtering which can be a little remediated adjusting the gain carefully through your SDR software or adding external filters. FCDPP and SDRPlay are vey similar, although the freq drift for SDRPlay is a bit annoying to me.

Nooelec RTL vs. FunCube PRO Plus vs. SDRPlay (VHF 143MHz graves via EME test)

Receiving a 10 GHz Reflected Moon Beacon with the RTL-SDR

There is an amateur radio group in Germany known as DL0SHF which transmits a 10 GHz (QRG = 10.368.025 MHz) beacon at the moon whenever it is visible at their site. The goal of this transmission is to detect the very weak beacon reflection.

Amateur radio hobbyist Rein (W6SZ) has written in to let us know about his, DK7IJ’s and the DL0SHF groups success with receiving the beacon using the RTL-SDR. He writes

DL0SHF transmit a signal to the moon when the moon is visible at the site. The run 2 modes 50 and 500 W output, 20 seconds on, 40 seconds off.

Last night, I managed to detect the beacon with a very simple receiving package. Amazing enough, using WSJT moon tracking data, the signal appeared right away when the moon appeared here above the trees.

The signal lasts only 20 seconds but then 40 seconds later, it returned! By the books.

I use a simple 10 GHz receiver here that I use for scouting signals on 10 GHz terrestrial as member of the San Bernardino Microwave Society.

It consists of a RTL Dongle IF block tuned to 618 MHz as IF.
Front-end is a PLL LNB, not modified, running with 9.750 GHz LO

The LNB is powered with 12 Volts by means of a Bias Tee.

Both items can be acquired for about USD 25.- on eBay and other places.

The antenna is a standard 18 inch satellite off-set dish.

The antenna has some elevation control and the feed ( LNB ) can be rotated for polarity control.

Every variable is manually operated.

At times I measured the beacon as high as 15 dB above the noise using HDSDR as DSP processor software.

The beacon was running in the 500 W output mode during these observations.

Moon bounce Visisble on the waterfall
Moon bounce visible on the waterfall
Moonbounce Equipment Setup
Moonbounce Equipment Setup