Tagged: NOAA

WXCorrector: Updating Keplers for Linux users of WXtoIMG

Thank you to Hamdy Abou El Anein for submitting news about the release of his software called "WXCorrector".  

WXCorrector is a dedicated solution designed specifically for Linux users who face challenges with the handling of Kepler elements in Wxtoimg. This tool addresses a critical issue where incorrect or outdated Keplerian elements can cause disruptions in tracking software, leading to inaccurate predictions and potential data loss.

It work on Linux, it needs sudo rights and Python3 installed.

https://github.com/hamdyaea/wxcorrector-for-linux

WXtoIMG is a commonly used piece of software for decoding images from NOAA APT weather satellites. However,  WXtoIMG is now considered abandonware as the original website has gone, and the main author has not updated the program in many years. The latest versions from 2017 can be downloaded from Archive.org. An alternative download site is https://www.wraase.de/wxtoimg, where they also provide a way to update Keplers for Windows machines.

Due to it's abandonment, certain features like Kepler updates from the internet appear to have broken over time with changes to the way Kepler files are served. Up to date Kepler files are required for the software to know exactly where satellites are in the sky for tracking and scheduling.

A modern alternative to WXtoIMG is SatDump, which now supports NOAA APT satellites.

WXtoIMG

Downloading Stored Images and Data from the NOAA Weather Satellite GAC Broadcast

With polar orbiting weather satellite reception we as amateur ground station operators with SDR receivers typically download images via "Direct Broadcast", which provides imagery of what the satellite is currently seeing live. However, the main way satellites such as the NOAA POES (NOAA 15, 18 & 19) satellites downlink is via "Global Area Coverage" (GAC) broadcast which provides the full stored imagery data of the entire global pass. However, GAC is only broadcast in locations where the satellite operator operates ground stations.

Over on YouTube dereksgc has uploaded a video showing how to receive GAC data from the NOAA POES satellites. He notes that GAC is now broadcast at 2247.5 MHz in the S-band, and the ground station it now downlinks to is likely in Svalbard, rather than in the USA. This means that amateur satellite stations close to the North Pole can receive the GAC signal, including dereksgc's station which (we believe) is in the Czech Republic.

Dereksgc uses a large 250cm offset dish with S-band feed connecting to a HackRF. In the video he demonstrates him receiving the signal, and then decoding it using SatDump. Finally he shows all the images from various locations around the earth that he was able to receive from one satellite pass.

Downloading stored data from NOAA weather satellites (GAC revisited) || Satellite reception pt.12B

Saveitforparts: Building an L-Band Satellite Antenna out of an Umbrella

Over on his YouTube channel "saveitforparts" has uploaded a video where he uses an umbrella, pin tin and tin foil tape to create a simple dish antenna for receiving GOES, NOAA and METEOR HRPT satellites.

The full build consists of an umbrella covered in tin foil tape, a helical wire feed on a pie tin, a filtered LNA, an RTL-SDR and an Android phone running SDR++. While he did have initial success at receiving, he soon decided to swap out the helical wire feed for a PCB linear feed instead which worked much better as helical feeds can be very difficult to get right.

Through the video saveitforparts goes over the failures he had, in the end noting that it's not a great antenna, but it's something that can be used in a pinch.

We've also seen the umbrella satellite dish used a few times in the past, where here it was used for NOAA APT reception, and here for Hydrogen Line radio astronomy.

We also want to remind readers that we are currently Crowd Funding for our Discovery Dish, which will be a low cost way to get into L-band satellite reception.

Can I Get Satellite Data With An Umbrella?

SatDump Version 1.1.0 Released – Feature Overview

SatDump is a popular program that can be used with RTL-SDRs and other software defined radios for decoding images from a wide array of weather imaging (and other) satellites including GOES, GK-2A, NOAA APT, NOAA HRPT, FengYun, Electro-L and Meteor M2 LRPT + HRPT, and many many others. It is multiplatform, running on Windows, MacOS, Linux and even Android. Because of it's good decoding performance, wide satellite and OS compatibility, it is the most recommended software for satellite decoding.

Recently SatDump was updated to version 1.1.0 and the new version brings many enhancements and new features. In summary, Lua scripting support has been added, calibrated products are now possible, composites can be made via Lua scripting, nightly builds are now available on GitHub, Mac .dmg builds are now available, decimation has been added, an SDR Server is available, and a Windows installer was added.

Support for various satellites and their instruments have also been added for NOAA APT, CCSDS LDPC decoding for Orion, LandSat-9, TUBIN X-Band, FengYun-3G/3F, Meteor M2-3, Geonetcast (soon), GOES RAW X-Band,  STEREO-A, DSCOVR EPIC, ELEKTRO-L N°4, Inmarsat STD-C, UmKA-1 (soon), PROBA-V GPS .

SatDump also now includes rotor tracking control which works together with it's satellite pass predictor and scheduler. There is no more need to use programs like Orbitron or Gpredict as everything can be handled by SatDump.

An insane amount of work has gone into SatDump, so if you like the software please remember to support the developer @aang23 by donating on Ko-Fi.

SatDump Rotator controller, Tracker and Scheduler

A Satellite Listening Journey

On his Medium.com blog, Mohsen Tahmasebi has posted an article about his journey into listening to satellites which started with his acquisition of an RTL-SDR Blog V3 dongle. The article begins by explaining his motivations for receiving satellites and how difficult hobbies like this are to get into in his home country of Iran. Despite the challenges he tasted success when he was able to receive NOAA APT signals on his second attempt using the included portable dipole antenna in a V-dipole configuration. Shortly after Mohsen was also able to receive Meteor-M2 LRPT.

Mohsen then built a more permanent V-dipole out of copper rods and optimized his antenna using NEC simulation software, finding that adding a reflector significantly improved reception. He then moved on to building a slightly more complex Turnstile antenna, which yielded even better results and allowed him to explore CubeSats at 435 MHz and contribute to SatNOGS. Finally, Mohsen ordered a Bullseye LNB and using a homemade bias tee, he received the QO-100 amateur radio transponder.

Overall, Mohsen's journey demonstrates that there is a lot of fun and learning available from internationally available satellites even in a country where equipment is hard to come by.

Mohsen's First Permanent V-Dipole for NOAA APT Reception

YouTube Satellite Decoding Series

Over on YouTube @dereksgc has been putting together a comprehensive video series on weather, amateur and other satellite reception. His series starts with receiving images from NOAA APT satellites, then Meteor M2, as then goes on to talk about low cost V-Dipole satellite antennas, how satellite dishes work, and recently how to use Ku-band LNBs with a satellite dish.

If you're getting started with RTL-SDR and satellite reception, this video series may be a good introduction for you.

Raspberry NOAA V2 Edition 2023 Image Released

Thank you to Manuel Lausmann for submitting news about the release of the "Raspberry NOAA V2 Edition 2023" image for Raspberry Pi's. This image has been created by Jochen Köster (DC9DD), and contains a few enhancements over the previous image, mainly by including a program that allows users to create composite images of images from the Meteor weather satellites. Manuel writes:

This is based on the well-known Raspberry Noaa V2. In this image, however, the latest MeteorDemod has been added, which makes it possible to generate composite images, which was previously only possible under Windows with Meteorgis.

Furthermore, the image has an additional FTP uploader. The image was created by Jochen Köster DC9DD. It's available from today. This image is also part of my off-grid station in Northern Norway.

Download link for the image: https://www.qsl.net/do3mla/raspberry-pi-images.html

Here is a link to the Facebook group for the image: https://www.facebook.com/groups/raspberrynoaav2edition

Here is a link to ranged from my off-grid station where this image is running: https://usradioguy.com/science/off-grid-apt-lrpt-satellite-ground-station

An example of a composite image from multiple Meteor satellite images.

More Information about the NOAA-15 AVHRR Failure

Thank you to Carl Reinmann (aka usradioguy) for submitting his blog post which goes into deeper detail about the NOAA-15 weather satellite imaging failure that we posted about last week. 

In his post Carl discusses in detail the technical aspects of the AVHRR Scan Motor failure, shows plots of the AVHRR motor current increasing, provides multiple examples of corrupt images being recently received and notes the history of previous failures which were eventually resolved.

He also notes that even with the AVHRR failure the other sensors on the satellite will remain functional, however a failure of this instrument would mean the end of the easy to receive APT images at 137 MHz from NOAA-15. We note that there is still the opportunity to receive NOAA-18 and NOAA-19 which are the remaining operational satellites that transmit APT at 137 MHz.

NOAA have now also released an official notice about the failure which reads:

Product Outage/Anomaly: NOAA-15 AVHRR degraded image data issued by NESDIS NSOF
Date/Time Issued: Oct 22, 2022 1947Z

The NOAA-15 AVHRR Scan Motor current began showing signs of instability on Oct 18 at approximately 1800Z, when the current began to gradually rise from about 205 mA to about 250 mA, where it remained until Oct 24. At about 0000Z on Oct 24, the current began rising again throughout the day, peaking at about 302mA on Oct 25. Scan motor temperature began rising about the same time and is currently steady at ~29°C. The instrument is still producing data, but it is highly degraded. This behavior may be a sign of an impending scan motor stall but requires further investigation. Options for recovery are limited.

NOAA-15 Scan Motor Failure