Tagged: Automatic dependent surveillance broadcast

Radio For Everyone New Posts: Building an ADS-B Station, Easy Homemade Beginner ADS-B Antennas

Akos the author of the radioforeveryone.com blog has recently added two new articles to his blog. The first post is a comprehensive guide to setting up your own ADS-B station. The guide focuses on creating a system that is easy to use, has good performance and is value for money. In the post he shows what type of computing hardware is required, what software can be used and what RTL-SDR dongles work best. He also shows what choices are available when it comes to amplification and filtering to improve signal reception and goes on to talk a bit about adapters and the antennas that work best for him.

BuildingADS-Bstation
Building a ADS-B station

 In the second post Akos shows more on how to build your own beginners antennas for ADS-B reception. The post focuses on showing how to modify the stock magnetic mount antenna that comes with most RTL-SDR dongles, and how to build a half-wave ‘spider’ antenna entirely out of coax cable. The post is full of easy to follow images which make it great for beginners.

A home made coax half-wave 'spider' antenna for ADS-B reception.
A home made coax half-wave ‘spider’ antenna for ADS-B reception.

FlightAware Prostick vs FlightAware Prostick Plus: Review

Recently the FlightAware Prostick Plus was released. The Prostick is a modified RTL-SDR with a LNA built into the dongle. It is optimized for ADS-B reception and works very well due to the low noise figure of the SKY7150 LNA which is used as the first stage LNA. However, due to the increased gain from the LNA it can easily overload from strong out of band signals, such as broadcast FM, DAB, DVB-T and GSM. To eliminate this problem FlightAware recommend using their 1090 MHz filter in front of the dongle. 

The FlightAware Prostick Plus is the same as the Prostick, but the Plus also incorporates a 1090 MHz SAW filter into the dongle itself. The overall cost is about $15.95 USD cheaper than buying the Prostick + Filter combination. See below for a tabulated comparison between the two units.

  FlightAware Prostick + Filter FlightAware Prostick Plus
Price

USA: $16.95 + $19.95 = $36.9 (Buy Prostick) (Buy Filter)

Worldwide: $48.99 + $18 Shipping = $66.99
(Buy Prostick + Filter)

USA: $20.95
(Buy Prostick Plus)

Worldwide: $29.99 + $12 Shipping = $41.99
(Buy Prostick Plus)

LNA + Filter Arrangement Filter -> SKY7150 LNA SKY7150 LNA -> Filter
Filter Specs Type: LC
Passband:
980 – 1150 MHz
Insertion Loss: 1.65 dB
Attenuation: 40 – 50 dB
Type: SAW
Passband:
1,075 MHz – 1,105 MHz
Insertion loss: 2.3 dB
Attenuation: 30 dB 
TCXO Old batches NO.
New batches YES.
YES
Current Draw 330 mA 300 mA
The new Pro Stick Plus RTL-SDR based ADS-B Receiver from FlightAware.
The new Pro Stick Plus RTL-SDR based ADS-B Receiver from FlightAware.

The first thing we notice is that the filter arrangement between the two units is reversed. On the Prostick the filter is external and must be placed before the LNA. This has the advantage of excellent rejection of out of band signals, but increases the noise figure (NF) of the system slightly. A higher noise figure means the ADS-B signal will end up being weaker, resulting in less range and reports. However, the FlightAware 1090 MHz filter has low insertion losses and should only increase the NF by 1-2 dB.

The Prostick Plus on the other hand uses a SAW filter positioned after the LNA. SAW filters at 1090 MHz typically have an insertion loss of anywhere between 2-3 dB’s. But since it is placed after the LNA the losses are almost completely eliminated by the gain from the LNA and thus the total NF remains low. The attenuation of the SAW filter is less, but it has a smaller pass band. The small pass band may be useful for people who live near an airport and suffer issues with interference from the 1030 MHz interrogation pulses or from GSM at 950 MHz.

In theory, the Prostick + Filter should operate better in environments with very strong out of band signals (any signal outside of 1090 MHz). And the Prostick Plus should operate better in environments with weaker out of band signals. The theory is that since the LNA is placed first in the signal chain on the Prostick Plus, it is more susceptible to overloading from the strong signals as it has no protection from a filter. The LNA used in both Prosticks is a SKY7150, which has a very high OIP3 rating. High OIP3 means that its performance in the presence of strong signals is excellent, and it will not overload so easily. However, even a very high OIP3 rated LNA cannot withstand the strong broadcast signals in some locations.

The Prostick Plus also has some other enhancements like a TCXO. ADS-B is very tolerant to frequency drift, so a TCXO won’t really improve decoding performance, but the cost of a 28.8 MHz TCXO purchased in bulk is under $1 USD, so they may have decided to add it anyway. They appear to also be using TCXO’s on the new production batches of the Prostick as well. The Plus also only draws 300 mA of current compared to the Prostick which draws 330mA. This may be due to the removal of the LED (Although the new batches of the Prostick might also have the LED removed as they advertise a power draw of 300 mA.) On the image of the PCBs below you can see the difference. The SAW filter is just underneath where the LED used to be.

Again, as we mentioned in our previous review of the Prostick it is a bit odd that the 39 dB OIP3 SKY7150 only appears to be drawing 60 mA, when it should be drawing 100 mA. The lower current usage is probably because they run it from 3.3V instead of 5V. The lower current use probably means that the OIP3 rating is reduced slightly by ~5 dBs.

The Prostick Plus and Prostick PCBs
The Prostick Plus and Prostick PCBs

Real World Testing

Here we test the Prostick and Prostick Plus in a signal environment with lots of strong interfering BCFM, DVB-T and GSM signals around. We’ve seen reports on the FlightAware forums that some users have seen improved performance with the Prostick Plus, whilst others have seen dismal or reduced performance. In these tests and review we are able to show when each stick will perform at its best. We do not test the Prostick without the filter, as without the filter we are unable to receive any ADS-B messages at all due to overloading.

Test 1: Flight Aware ADS-B Antenna

First we set up a test using the FlightAware ADS-B antenna, a 2-way signal splitter and the Prostick Plus and Prostick + Filter. We used Modesdeco2 as the ADS-B software, and ran the test for 45 minutes.

The results show that the Prostick Plus edges ahead of the Prostick + Filter by a small amount. It seems that the 1-2 dB loss in the external filter does not contribute to a huge reduction in ADS-B messaging, but the results do show that the Prostick Plus will give you better results in an environment with favorable reception conditions.

In this test we used the excellent FlightAware ADS-B antenna. This antenna is tuned specifically to 1090 MHz, and performs some rejection of the out of band signals. This rejection is enough to allow the Prostick Plus to work well in our test area without overloading.

In the image slider below we first checked ADS-B reception in SDR#, to see if there was any noticeable visual difference. The reception seemed identical. In the remaining images we checked to see how the reception was on out of band signals with the two units. In these tests we want the out of band signals to be low, so smaller signals are better. The Prostick Plus filters our out band signals significantly less, which can be a reason for increased overload. But the amount of filtering performed by the Plus was sufficient together with this 1090 MHz tuned antenna to not cause any overload at max gain.

http://ADS-BComparison

ADS-B Comparison

http://BCFM

BCFM

http://152MHz

152 MHz

http://858MHz

858 MHz

Test 2: Discone Antenna

In test 2 we show what can happen if the out of band signals going into the Prosticks are really strong. This could especially happen if you are using a wideband antenna that is not specifically tuned to 1090 MHz, or if the out of band signals in your area are exceptionally strong (living near a transmission tower for example). In this test we used the same setup as in test 1, but used a wideband discone as the antenna instead. This means that the natural out of band signal filtering from the FlightAware antenna is not present anymore, and thus out of band signals come into the dongle much stronger.

Here we found that the Prostick Plus produced dismal results. The out of band signals were too strong for the LNA to handle, thus causing overload and significant desensitization of the ADS-B signals. The messages received by the Prostick + Filter was significantly higher. 

In the SDR# screenshots below we can clearly see that the Prostick Plus has very poor ADS-B reception at 1090 MHz with this antenna. The noise floor is much higher due to desensitization and overload from broadcast FM and DVB-T signals. Reducing the gain on the RTL-SDR does not help a lot, since most of the overload occurs in the first stage SKY7150 LNA. This can also be seen in the amount of signal overload that is present when tuned to the broadcast FM and other bands in SDR#.

http://ADS-BComparison

ADS-B Comparison

http://1090MHzGainReduced

1090 MHz Gain Reduced

http://BCFM

BCFM

http://BCFMGainReduced

BCFM Gain Reduced

http://152MHz

152 MHz

http://415Mhz

415 Mhz

http://858MHz

858 MHz

Conclusions

The Prostick and Prostick Plus dongles are both excellent low cost ADS-B receivers. If you want to set up a permanent ADS-B monitoring station they are highly recommended. 

So what are the lessons learned from these tests?

  1. If you live in an environment with extremely strong out of band signals, use the Prostick + Filter combination.
  2. Otherwise use the Prostick Plus for slightly better performance and lower cost.
  3. To reduce the possibility of overload with the Prostick Plus use an antenna tuned to 1090 MHz.

The table below summarizes the recommendations again.

 

Antenna -> LNA -> Filter
(Prostick Plus)

Antenna -> Filter -> LNA
(Prostick + FA Filter)
Advantages

Noise figure (NF) is dominated by the LNA, thus this method gives minimum NF.

Losses in filter overcome by LNA gain.

LNA will not be susceptible to overloading from out of band signals.

Disadvantages

The LNA can overload from out of band signals since it is not protected by a filter.

The insertion loss (IL) of the filter directly adds to the noise figure (NF). For example a 2 dB IL filter will add 2 dB to the system NF. This may result in a few dB’s lower SNR.

When to use Use this method if you do not have strong out of band signals in your area and/or if you have an LNA with a high OIP3 rating, like with the SKY7150 LNA which is used on the Prostick’s. Use this method if you have very strong out of band signals in your area.

For most people the Prostick Plus should work fine and be the better choice. Also rest assured that if you purchase a Prostick Plus and find that it overloads in your environment, you still always have the option of placing an external filter in front of it. Then you’ll practically have the same performance as with the standard Prostick + Filter combination. A Prostick Plus + External Filter combination may even be more beneficial for users in very very strong signal environments.

Also remember that the Prostick’s are designed to be placed as close to the antenna as possible, without the use of coax cable. You can use USB extension cables, or run the Prostick on a remote Raspberry Pi computing unit to achieve this. If you want to run coax between the antenna and Prostick, you will see heavily reduced performance due to the losses in the coax cable. In this situation you should instead place an LNA like the LNA4ALL or Uputronics ADS-B LNA by the antenna, and use a bias tee to power it.

Radio For Everyone New Posts: Building an ADS-B Station, Easy Homemade Beginner ADS-B Antennas

Akos the author of the radioforeveryone.com blog has recently added two new articles to his blog. The first post is a comprehensive guide to setting up your own ADS-B station. The guide focuses on creating a system that is easy to use, has good performance and is value for money. In the post he shows what type of computing hardware is required, what software can be used and what RTL-SDR dongles work best. He also shows what choices are available when it comes to amplification and filtering to improve signal reception and goes on to talk a bit about adapters and the antennas that work best for him.

BuildingADS-Bstation
Building a ADS-B station

 In the second post Akos shows more on how to build your own beginners antennas for ADS-B reception. The post focuses on showing how to modify the stock magnetic mount antenna that comes with most RTL-SDR dongles, and how to build a half-wave ‘spider’ antenna entirely out of coax cable. The post is full of easy to follow images which make it great for beginners.

A home made coax half-wave 'spider' antenna for ADS-B reception.
A home made coax half-wave ‘spider’ antenna for ADS-B reception.

FlightAware Prostick vs FlightAware Prostick Plus: Review

Recently the FlightAware Prostick Plus was released. The Prostick is a modified RTL-SDR with a LNA built into the dongle. It is optimized for ADS-B reception and works very well due to the low noise figure of the SKY7150 LNA which is used as the first stage LNA. However, due to the increased gain from the LNA it can easily overload from strong out of band signals, such as broadcast FM, DAB, DVB-T and GSM. To eliminate this problem FlightAware recommend using their 1090 MHz filter in front of the dongle. 

The FlightAware Prostick Plus is the same as the Prostick, but the Plus also incorporates a 1090 MHz SAW filter into the dongle itself. The overall cost is about $15.95 USD cheaper than buying the Prostick + Filter combination. See below for a tabulated comparison between the two units.

  FlightAware Prostick + Filter FlightAware Prostick Plus
Price

USA: $16.95 + $19.95 = $36.9 (Buy Prostick) (Buy Filter)

Worldwide: $48.99 + $18 Shipping = $66.99
(Buy Prostick + Filter)

USA: $20.95
(Buy Prostick Plus)

Worldwide: $29.99 + $12 Shipping = $41.99
(Buy Prostick Plus)

LNA + Filter Arrangement Filter -> SKY7150 LNA SKY7150 LNA -> Filter
Filter Specs Type: LC
Passband:
980 – 1150 MHz
Insertion Loss: 1.65 dB
Attenuation: 40 – 50 dB
Type: SAW
Passband:
1,075 MHz – 1,105 MHz
Insertion loss: 2.3 dB
Attenuation: 30 dB 
TCXO Old batches NO.
New batches YES.
YES
Current Draw 330 mA 300 mA
The new Pro Stick Plus RTL-SDR based ADS-B Receiver from FlightAware.
The new Pro Stick Plus RTL-SDR based ADS-B Receiver from FlightAware.

The first thing we notice is that the filter arrangement between the two units is reversed. On the Prostick the filter is external and must be placed before the LNA. This has the advantage of excellent rejection of out of band signals, but increases the noise figure (NF) of the system slightly. A higher noise figure means the ADS-B signal will end up being weaker, resulting in less range and reports. However, the FlightAware 1090 MHz filter has low insertion losses and should only increase the NF by 1-2 dB.

The Prostick Plus on the other hand uses a SAW filter positioned after the LNA. SAW filters at 1090 MHz typically have an insertion loss of anywhere between 2-3 dB’s. But since it is placed after the LNA the losses are almost completely eliminated by the gain from the LNA and thus the total NF remains low. The attenuation of the SAW filter is less, but it has a smaller pass band. The small pass band may be useful for people who live near an airport and suffer issues with interference from the 1030 MHz interrogation pulses or from GSM at 950 MHz.

In theory, the Prostick + Filter should operate better in environments with very strong out of band signals (any signal outside of 1090 MHz). And the Prostick Plus should operate better in environments with weaker out of band signals. The theory is that since the LNA is placed first in the signal chain on the Prostick Plus, it is more susceptible to overloading from the strong signals as it has no protection from a filter. The LNA used in both Prosticks is a SKY7150, which has a very high OIP3 rating. High OIP3 means that its performance in the presence of strong signals is excellent, and it will not overload so easily. However, even a very high OIP3 rated LNA cannot withstand the strong broadcast signals in some locations.

The Prostick Plus also has some other enhancements like a TCXO. ADS-B is very tolerant to frequency drift, so a TCXO won’t really improve decoding performance, but the cost of a 28.8 MHz TCXO purchased in bulk is under $1 USD, so they may have decided to add it anyway. They appear to also be using TCXO’s on the new production batches of the Prostick as well. The Plus also only draws 300 mA of current compared to the Prostick which draws 330mA. This may be due to the removal of the LED (Although the new batches of the Prostick might also have the LED removed as they advertise a power draw of 300 mA.) On the image of the PCBs below you can see the difference. The SAW filter is just underneath where the LED used to be.

Again, as we mentioned in our previous review of the Prostick it is a bit odd that the 39 dB OIP3 SKY7150 only appears to be drawing 60 mA, when it should be drawing 100 mA. The lower current usage is probably because they run it from 3.3V instead of 5V. The lower current use probably means that the OIP3 rating is reduced slightly by ~5 dBs.

The Prostick Plus and Prostick PCBs
The Prostick Plus and Prostick PCBs

Real World Testing

Here we test the Prostick and Prostick Plus in a signal environment with lots of strong interfering BCFM, DVB-T and GSM signals around. We’ve seen reports on the FlightAware forums that some users have seen improved performance with the Prostick Plus, whilst others have seen dismal or reduced performance. In these tests and review we are able to show when each stick will perform at its best. We do not test the Prostick without the filter, as without the filter we are unable to receive any ADS-B messages at all due to overloading.

Test 1: Flight Aware ADS-B Antenna

First we set up a test using the FlightAware ADS-B antenna, a 2-way signal splitter and the Prostick Plus and Prostick + Filter. We used Modesdeco2 as the ADS-B software, and ran the test for 45 minutes.

The results show that the Prostick Plus edges ahead of the Prostick + Filter by a small amount. It seems that the 1-2 dB loss in the external filter does not contribute to a huge reduction in ADS-B messaging, but the results do show that the Prostick Plus will give you better results in an environment with favorable reception conditions.

In this test we used the excellent FlightAware ADS-B antenna. This antenna is tuned specifically to 1090 MHz, and performs some rejection of the out of band signals. This rejection is enough to allow the Prostick Plus to work well in our test area without overloading.

In the image slider below we first checked ADS-B reception in SDR#, to see if there was any noticeable visual difference. The reception seemed identical. In the remaining images we checked to see how the reception was on out of band signals with the two units. In these tests we want the out of band signals to be low, so smaller signals are better. The Prostick Plus filters our out band signals significantly less, which can be a reason for increased overload. But the amount of filtering performed by the Plus was sufficient together with this 1090 MHz tuned antenna to not cause any overload at max gain.

http://ADS-BComparison

ADS-B Comparison

http://BCFM

BCFM

http://152MHz

152 MHz

http://858MHz

858 MHz

Test 2: Discone Antenna

In test 2 we show what can happen if the out of band signals going into the Prosticks are really strong. This could especially happen if you are using a wideband antenna that is not specifically tuned to 1090 MHz, or if the out of band signals in your area are exceptionally strong (living near a transmission tower for example). In this test we used the same setup as in test 1, but used a wideband discone as the antenna instead. This means that the natural out of band signal filtering from the FlightAware antenna is not present anymore, and thus out of band signals come into the dongle much stronger.

Here we found that the Prostick Plus produced dismal results. The out of band signals were too strong for the LNA to handle, thus causing overload and significant desensitization of the ADS-B signals. The messages received by the Prostick + Filter was significantly higher. 

In the SDR# screenshots below we can clearly see that the Prostick Plus has very poor ADS-B reception at 1090 MHz with this antenna. The noise floor is much higher due to desensitization and overload from broadcast FM and DVB-T signals. Reducing the gain on the RTL-SDR does not help a lot, since most of the overload occurs in the first stage SKY7150 LNA. This can also be seen in the amount of signal overload that is present when tuned to the broadcast FM and other bands in SDR#.

http://ADS-BComparison

ADS-B Comparison

http://1090MHzGainReduced

1090 MHz Gain Reduced

http://BCFM

BCFM

http://BCFMGainReduced

BCFM Gain Reduced

http://152MHz

152 MHz

http://415Mhz

415 Mhz

http://858MHz

858 MHz

Conclusions

The Prostick and Prostick Plus dongles are both excellent low cost ADS-B receivers. If you want to set up a permanent ADS-B monitoring station they are highly recommended. 

So what are the lessons learned from these tests?

  1. If you live in an environment with extremely strong out of band signals, use the Prostick + Filter combination.
  2. Otherwise use the Prostick Plus for slightly better performance and lower cost.
  3. To reduce the possibility of overload with the Prostick Plus use an antenna tuned to 1090 MHz.

The table below summarizes the recommendations again.

 

Antenna -> LNA -> Filter
(Prostick Plus)

Antenna -> Filter -> LNA
(Prostick + FA Filter)
Advantages

Noise figure (NF) is dominated by the LNA, thus this method gives minimum NF.

Losses in filter overcome by LNA gain.

LNA will not be susceptible to overloading from out of band signals.

Disadvantages

The LNA can overload from out of band signals since it is not protected by a filter.

The insertion loss (IL) of the filter directly adds to the noise figure (NF). For example a 2 dB IL filter will add 2 dB to the system NF. This may result in a few dB’s lower SNR.

When to use Use this method if you do not have strong out of band signals in your area and/or if you have an LNA with a high OIP3 rating, like with the SKY7150 LNA which is used on the Prostick’s. Use this method if you have very strong out of band signals in your area.

For most people the Prostick Plus should work fine and be the better choice. Also rest assured that if you purchase a Prostick Plus and find that it overloads in your environment, you still always have the option of placing an external filter in front of it. Then you’ll practically have the same performance as with the standard Prostick + Filter combination. A Prostick Plus + External Filter combination may even be more beneficial for users in very very strong signal environments.

Also remember that the Prostick’s are designed to be placed as close to the antenna as possible, without the use of coax cable. You can use USB extension cables, or run the Prostick on a remote Raspberry Pi computing unit to achieve this. If you want to run coax between the antenna and Prostick, you will see heavily reduced performance due to the losses in the coax cable. In this situation you should instead place an LNA like the LNA4ALL or Uputronics ADS-B LNA by the antenna, and use a bias tee to power it.

Radio For Everyone: An Easy Homemade Outernet Antenna, More FlightAware Pro Stick Plus Results

Akos from the radio for everyone blog (formerly known as the rtlsdr4everyone blog) has uploaded two new posts. On the first post he shows some further tests on the new FlightAware Prostick plus. The Prostick is an RTL-SDR that contains a built in LNA and the Prostick plus adds an additional SAW filter on the stick. For him the Prostick Plus works significantly better than the regular Protstick + external FA cavity filter and also gets about twice the ADS-B reception reports as our V3 which does not use an additional internal LNA. Next week we hope to release our own review of the Prostick Plus, and we’ll hopefully be able to show and explain why some people see better performance with the plus and why some instead see degraded performance.

In his second post Akos shows a tutorial on building an easy helical antenna for Outernet reception. The antenna is constructed from readily available household materials such as a soda bottle, coax cable, electrical tape and a cookie tin. With the cookie tin used he was able to get a SNR reading between 7 – 9 dB, which is pretty good considering that only 3 dB is required for Outernet decoding to work.

Outernet hardware plus the homemade helical antenna made by Akos.
Outernet hardware plus the homemade helical antenna made by Akos.

New Low Power RTL-SDR’s for Stratux ADS-B Receivers

Stratux is an RTL-SDR based project that gives small plane pilots access to ADS-B data, without having to purchase an expensive commercial ADS-B installation. It consists of software that runs on a Raspberry Pi, and two RTL-SDR dongles to receive both 1090 MHZ ADS-B, and 978 MHz UAT. The decoded data is then streamed via WiFi to a tablet running navigation aide software with charts for pilots.

Typically Stratux kits come with two standard ‘Nano’ styled RTL-SDR dongles. However, users of the Stratux system have been reporting problems with overheating, and with the Pi struggling with the high current demands of a typical setup which includes two RTL-SDR dongles, active WiFi broadcasting, a GPS unit and an optional cooling fan. A typical RTL-SDR dongle draws 280 mA, so two dongles are already pulling 560 mA.

Chris, creator of the Stratux software and seller of Stratux kits has just released a new low power RTL-SDR dongle (kit with antennas). The cost is $35 USD for two dongles (one for 1090 MHz and one for 978 MHz). The dongle obtains its low power feature by using a switching regulator instead of a linear regulator as the main 3.3V power regulator on the PCB. Normally you would not want to use switching regulator for the main regulator in an RF device because they are very noisy in terms of RF interference generated. However switching regulators are much more efficient compared to linear regulators, and thus save a lot of current wastage. Other dongle manufacturers like ThumbNet have actually gone the other way, removing the secondary 1.2V switching regulator from the standard dongle design, and using a linear regulator instead. The ThumbNets end up with lower noise, but draw 400 mA of current. 

With the switching regulator the new Stratux dongles only draw about 185 mA, a saving of almost 100 mA. They also generate 0.5W less heat. Users of the Stratux system have so far been impressed with them and have not noticed any appreciable difference in ADS-B performance. We think that these low power dongles might also be of interest to people using them on mobile phones or battery/solar powered remote installations.

The new Stratux low power RTL-SDR dongles.
The new Stratux low power RTL-SDR dongles.

During testing, Chris found that there was no significant noise floor increase visible on the 978 MHz  & 1090 MHz frequencies. Most of the switching noise increase appears to be on the lower frequencies, but those frequencies are not relevant for the Stratux use case anyway.

Chris was kind enough to send us some samples of the new low power dongles. First we ran a noise floor scan with rtl_power to determine the effect of the switching regulator. The results show that the spurs and noise floor readings have definitely increased by a significant amount, with an especially large noise floor rise below 400 MHz. In SDR# wandering switching noise spurs are also visible throughout the spectrum, but they tend to weaken in strength once an antenna is connected.

Stratux vs Standard Dongle vs V3 Dongle Noise Floor Scan
Stratux vs Standard Dongle vs V3 Dongle Noise Floor Scan

Fortunately, ADS-B is very tolerant to spurs and is generally not affected by this type of noise. We’ve only given the Stratux a quick test on ADS-B so far, but when compared against another ‘nano’ styled dongle the Stratux performed nearly identically (in fact even a little better) in terms of messages received. The two dongles were connected to the same antenna via a splitter and we logged the number of messages received in 10 minutes.

Quick ADS-B Reception Test
Quick ADS-B Reception Test

In conclusion the Stratux RTL-SDR set out to solve the mobile power issues suffered by people using the Stratux system. It has achieved that with an over 100mA saving in current use. The new Stratux dongle is much noisier, but the noise does not appear to significantly affect ADS-B reception as seen by our results and from the reports from Stratux users who beta tested this dongle.

Chris has also created a post on Reddit /r/stratux which talks a bit more about the new dongle.

FlightAware Release their Pro Stick Plus: An ADS-B Optimized RTL-SDR with LNA and 1090 MHz Filter Built in

Back in March of this year we posted about the release of the FlightAware “Pro Stick”. The Pro Stick is FlightAware’s ADS-B optimized RTL-SDR dongle. It uses a low noise figure LNA on the RF front end to reduce the system noise figure, thus improving the SNR at 1090 MHz. Because the added gain of the LNA can easily cause overload problems if there are other strong signals around, FlightAware recommend using one of their 1090 MHz ADS-B filters in front of the dongle to prevent overload.

FlightAware have just come out with the “Pro Stick Plus” which is the same as their Pro Stick, but now with the 1090 MHz filter built into the dongle itself. The Pro Stick Plus costs $20.95 USD on Amazon, which is a good deal cheaper than buying the standard Pro Stick ($16.95 USD) plus their ADS-B filter ($19.95 USD), which totals $36.90. Customers outside of the USA can purchase the Pro Stick Plus from seller WiFi Expert on eBay for $29.95 USD.

FlightAware.com is a company that specializes in live air travel tracking. Most of their data comes from volunteers running RTL-SDR ADS-B receivers.

The new Pro Stick Plus RTL-SDR based ADS-B Receiver from FlightAware.
The new Pro Stick Plus RTL-SDR based ADS-B Receiver from FlightAware.

Over on their forums and on Amazon, they announced the device and specs. They wrote:

FlightAware is excited to announce the next evolution of USB SDR sticks for ADS-B reception! The new Pro Stick Plus USB SDR builds on the popular Pro Stick by adding a built-in 1090 MHz bandpass filter. The built-in filter allows for increased performance and range of reception by 10-20% for installations where filtering is beneficial. Areas with moderate RF noise, as is typically experienced in most urban areas, generally benefit from filtering. By integrating the filter into the SDR stick, we are able to reduce the total cost by more than 40% when compared to buying a Pro Stick and an external filter.

Specifications:

  • Filter: 1,075 MHz to 1,105 MHz pass band with insertion loss of 2.3 dB; 30 dB attenuation on other frequencies
  • Amp: 19 dB Integrated Amplifier which can increase your ADS-B range 20-100% more compared to dongles from other vendors which can increase range 10-20% over a Pro Stick in environments where filtering is beneficial
  • Native SMA connector
  • Supported by PiAware
  • R820T2 RTL2832U chips
  • USB powered, 5V @ 300mA

Note that this dongle is only for ADS-B at 1090 MHz, and not for 978 MHz UAT signals, as the filter will cut that frequency out.

Back in April, we did a review of the original Pro Stick. We found its performance on ADS-B reception to be excellent, but only when a filter was used. The low NF LNA theoretically improves the SNR of ADS-B signals by about 7-8 dB, but in reality there is too much gain causing signal overload everywhere, thus making reception impossible without the filter. Rural environments may not need a filter, but in a typical urban or city environment strong FM/TV/GSM/etc signals are abundant and these signals easily overloaded the Pro Stick when no filtering was used. This new Pro Stick Plus dongle completely solves that problem at a low cost with its built in filter.

Remember that if you are using a run of coax cable between the LNA and RTL-SDR, then it is more optimal to use an external LNA, like the LNA4ALL. Only an external LNA mounted near the antenna can help overcome coax, connector, filter and other losses as well as reducing the system noise figure. The FlightAware dongles are the optimal solution when they are mounted as close to the antenna as possible. This is usually the case when running the FlightAware feeder software on a Raspberry Pi.

We hope to soon review the Pro Stick Plus, however we assume it will operate nearly identically to the Pro Stick + FlightAware ADS-B filter combination.

New Posts From RTLSDR4Everyone: Avoiding RTL-SDR Ripoffs, ADS-B Antenna Reviews, Travel Kits and Direct Sampling vs Upconverter vs SDRPlay

Akos from the rtlsdr4everyone blog has been busy uploading new posts over the past few days. His first post is part three in a series that discusses how to avoid ripoffs when buying RTL-SDR dongles. The RTL-SDR market has recently become quite saturated, and it is now easy to purchase something that most experienced users would consider a ripoff. His post shows some examples of what he considers to be poor value choices available on eBay.

An example of a ripoff price.
An example of a ripoff price.

His second post discusses his methodology for testing dongles on their ADS-B performance. The second post then leads into the third post in which he compares four antennas on ADS-B reception. He compares two telescopic whip antennas, one set to 1/2 wave length, and the other set to 1/4 wave, a NooElec 5dBi whip antenna, and the FlightAware ADS-B antenna. His results show that the FlightAware antenna was the best performer, followed by the 1/2 wave telescopic whip, then the NooElec 5dBi whip and finally the 1/4 wave telescopic whip. The fourth post continues the ADS-B topic, and he reviews the NooElec 5dBi ADS-B antenna. Although the performance is not as good as the FlightAware antenna he mentions that it is much smaller and great for portable use. If  you are interested, we have also a review of the FlightAware antenna, and we also found its performance to be excellent.

The four ADS-B antennas tested in Akos' review.
The four ADS-B antennas tested in Akos’ review.

In his fifth post Akos shows what his RTL-SDR travel kit consists of. In this post he recommends both our RTL-SDR V3 dongle as well as the NooElec SMArt. For a portable computer, he takes along a Raspberry Pi 3 and a 20,000 mAh battery bank with solar charger. (Though we’d be interested to hear from Akos how long it takes for that small solar panel to charge the battery bank, probably takes days to charge?) For antennas he prefers to take along our large 1.5m telescopic antenna, the NooElec 5dBi ADS-B antenna, a medium telescopic antenna and a Nagoya knock-off telescopic antenna.

Akos' Mobile ADS-B Station.
Akos’ Mobile ADS-B Station.

Finally in the sixth post he shows a video that compares the differences between a generic dongle modded with direct sampling (without any impedance matching circuitry), an RTL-SDR dongle with ham-it-up upconverter and an SDRplay. Unsurprisingly the upconverter and SDRplay performs best.

http://www.youtube.com/watch?v=g7qa8nQbIPg

As a bonus, Akos also has done an interesting stress test on the metal case of our RTL-SDR dongles, where he runs it over with a bus to see if it will survive. The case is mangled afterwards, but the dongle and functionality survives!

Dotcom dongle meets a bus

RTLSDR4Everyone: Review of the FlightAware ADS-B RTL-SDR

Akos from the RTLSDR4Everyone blog has recently uploaded a review of the FlightAware ADS-B ProStick RTL-SDR dongle. The FlightAware (FA) dongle is a standard RTL-SDR with SMA connector, but with a very low noise figure LNA built into the front end. This low noise figure helps improve the SNR of ADS-B signals, resulting in more decodes and further range. We previously reviewed the FlightAware dongle in our own review available here.

In his post Akos reviews the FA dongle on its use as a general RTL-SDR as well as an ADS-B receiver. His review is initially critical to some of the misinformed advertising claims made by FA. He then goes on to show some noise floor scans and some ADS-B reception comparisons. Finally he shows some modifications that can be made to improve the cooling of the PCB.

He concludes that the FA ProStick works very well on improving ADS-B performance, but that overloading due to the increased gain is common.

prostickreview_akos2

ADS-B Traffic Analytics with Valo and an RTL-SDR

Valo is a software service for real time big data streaming analytics of data from many sensors.  On their website they explain their service as follows.

Valo is a single platform for streaming (real time) and batch (historical) data analysis. Valo provides multi-paradigm big data storage for both semi-structured and numerical data. Valo contains a powerful analytics engine for processing all of this data. Finally Valo is super simple – a single tool that can be up and running in minutes.

Recently Rémi Selva wrote in to let us know about an interesting use-case for Valo which involves the RTL-SDR. In his post Rémi shows us how he uses an RTL-SDR, Raspberry Pi running dump1090, and Valo to create interesting data visualizations of the ADS-B aircraft data. He not only shows how to visualize the data in Valo, but also how to use queries to dig deeper into the data, looking for patterns.

Valo ADS-B Data Flow
Valo ADS-B Data Flow

Rémi writes that what he’s done is simply a proof of concept that shows the power of Valo. He writes that one such interesting future development could be using Valo to detect FBI/CIA surveillance aircraft. Previously we posted about how an RTL-SDR user discovered these surveillance aircraft by their odd circular flight paths. The analytics engine of Valo could be used to automatically detect odd flight patterns such as from these surveillance aircraft. 

Plotting the history of aircraft coming into land at HK airport
Plotting the history of aircraft coming into land at HK airport