Category: KrakenSDR

A KrakenSDR to TAK Interface Converter

Thank you to RTL-SDR.COM reader Aaron, who recently found a Kraken-to-TAK converter made by "SignalMedic" and "dngrssgnls" which converts the KrakenSDR bearing output data to "Cursor on Target" (COT) or XML format, allowing common TAK interfaces to read and display the data. Currently the converter allows a line of bearing to be displayed in a TAK app, with arbitrary length. The converter consists of a single json file for Node Red. The GitHub readme reads:

Convert data from a Kraken SDR to TAK endpoints

The software will parse information collected by Kraken, convert to COT and XML and send to common TAK interfaces. The length of the line is arbitrary. The line is 6km long, but has no correlation besides bearing to the transmitter. Intersecting bearing lines are necessary for determining the geolocation of a transmitter.

Planned improvements include:

  • Button for persisting the current line and generating a new UID
  • Work on filtering out by DOA Angle node
  • Dashboard for easier updating of Kraken and TAK endpoints
  • Simplified deployment

We note that most TAK apps may be a little limited for direction finding purposes as they cannot calculate bearing intersections over time, or calculate a bearing grid like the KrakenSDR Android app, and KrakenSDR online web mapper does. However, often a single line of bearing is enough information, especially if there are multiple distributed units contributing bearing data.

If you weren't already aware, KrakenSDR is our 5-channel coherent radio based on RTL-SDRs, and it can be used for applications like radio direction finding. It can be purchased on Crowd Supply.

TAK (Tactical Assault Kit) is software used by the military and other organizations for visualizing geospatial information such as enemy and friendly positions. Civilian versions of TAK also exist, such as ATAK for Android. Previously we posted about how ATAK has the ability to plot aircraft positions via an RTL-SDR receiving ADS-B.

KrakenSDR bearing data displayed on a TAK app.

KrakenSDR Black Friday Sale 15% Off on Crowd Supply

Over on Crowd Supply our KrakenSDR is currently reduced by 15% for Black Friday. The sale lasts until November 30, or while stocks last. This brings the price of the KrakenSDR down to US$424, down from the regular US$499 pricing. The companion antenna set is also reduced from US$199 down to US$169.

If you weren't already aware, KrakenSDR is our 5-channel coherent radio based on RTL-SDRs, and it can be used for applications like radio direction finding.

DragonOS: Tracking ADS-B, UAT, ACARS, VDL2 with TAR1090 and a KrakenSDR

Aaron who created and maintains the DragonOS SDR Linux distribution has recently uploaded a new video where he uses a KrakenSDR to simultaneously receive and decode multiple aircraft tracking, telemetry/messaging signals including ADS-B, UAT, ACARS and VDL2.

In the video Aaron uses his WarDragon which is a Mini PC that comes preinstalled with DragonOS. It is currently available on his website for $220, or $550 including a carry case, and Airspy R2.

The video shows how to setup all the software including FlightView GUI which is a graphical user interface that allows users to manage and configure various Docker based aircraft-related services including tar1090, readsb and acarshub.

WarDragon ADS-B, UAT, ACARS, and VDL2 w/ TAR1090 + ACARS Hub (KrakenSDR, Defli optional)

KrakenSDR: Finding Multiple GSM Base Station Transmit Towers with the Multi-VFO Feature

If you weren't already aware, KrakenSDR is our 5-channel coherent radio based on RTL-SDRs, and it can be used for applications like radio direction finding. KrakenSDR is in stock and can be purchased from CrowdSupply or Mouser. More information is also available on our website at krakenrf.com.

Last month we used the KrakenSDR to find the location of a low power FM transmitter. Now in this video we're using KrakenSDR to find the location of GSM base station transmit towers for four frequencies. We're also using the multi-vfo feature to capture the bearing data of these four frequencies simultaneously which can save us some search time.

Once we've found the first transmit tower, we already have some logged bearing data that can be used to help us find the second tower faster. Then the third and fourth towers are even faster to find due to even more data having already been collected.

Interestingly, it also turns out that the first frequency we search for is actually being used by another tower that we pass along the way back. The location of this tower was picked up on the drive back to the first tower. It's possible that these two towers which are a few kilometers apart are covering different areas with directional antennas.

Also note that the first two transmitter searches use the "auto-zoom" map camera feature, which will automatically zoom the screen to show both the vehicle and estimated transmitter location. The second half uses the standard free camera mode.

This is on a new build of the App which is currently in testing, so some things may look slightly different to the currently released version. The new app version will have some minor feature improvements.

KrakenSDR: Finding Multiple GSM Base Station Transmit Towers with the Multi-VFO Feature

Fox Hunting with the KrakenSDR

Over on his YouTube channel Mark Jessop has uploaded some dash cam footage showing him using a KrakenSDR and a custom LED display to hunt down three amateur radio transmitters during a fox-hunt.

An amateur radio fox-hunt is an activity where someone will hide a transmitter within a defined area, and it is up to the hunters to use radio direction finding equipment to find it. The KrakenSDR is our 5-channel coherent radio based on RTL-SDRs, and it can be used for applications like radio direction finding.

Mark uses a custom four element array on the roof of his car, which is connected to his KrakenSDR. Instead of the KrakenSDR app, Mark prefers to use his custom LED HUD to displays the bearings and signal power directly.

Some annotated and sped-up dash-cam footage captured during the July 2023 Amateur Radio Experimenters Group Fox-hunt. We run these monthly, and usually have three transmitters hidden around the Adelaide (South Australia) area.

I run a KrakenSDR with a custom-built 4-element antenna array mounted to the roof of my car. This gives me direction estimates to the target transmitter, at least when the signals are strong enough!

I've also build a heads-up-display which helps me safely make use of the KrakenSDR's output data while driving. The source code for this is here: https://github.com/darksidelemm/neopixel-doa-display

The display is shielded so it's not visible from outside the car - Red & Blue lights on your dashboard can give the wrong impression!

AREG Fox-hunt - 14th July 2023

KrakenSDR Low Power FM Transmitter Hunt

If you weren't already aware, KrakenSDR is our 5-channel coherent radio based on RTL-SDRs, and it can be used for applications like radio direction finding. KrakenSDR is in stock and can be purchased from CrowdSupply or Mouser. More information is also available on our website at krakenrf.com.

In this video we are using a KrakenSDR to hunt for the location of a low power FM transmitter (LPFM) station at 106.7 MHz. These low power FM transmitters are legal as unlicensed transmitters as long as they operate under certain restrictions, the main one being that they transmit at under 1 watt EIRP. LPFM stations are typically operated by local communities or niche radio stations.

Because they are unlicensed, there is no official record and their location doesn't show up in the radio spectrum management database. A requirement of LPFM is that the station broadcast the contact information of the owners regularly, but it can be difficult to locate non-compliant stations that don't do this. But the KrakenSDR makes finding them easy.

The array is 45cm in radius, which is about the maximum that my RAV4 car roof can fit. Some of the antennas sit on a slight curve on the roof, but this appears to have negligible effect. The spacing factor is about 0.19 (optimal is 0.5 - a much larger radius), but even 0.19 is sufficient to find the transmitter fairly easily.

KrakenSDR Low Power FM Transmitter Hunt

 

DragonOS: KrakenSDR and DF Aggregator Connected via a 1km WiFi Link

DragonOS is a ready to use Ubuntu Linux image that comes preinstalled with multiple SDR software packages including a tool called DF Aggregator, which can be used for radio direction finding with a device like our KrakenSDR.

In his latest video, Aaron, creator of DragonOS tests out a long range one kilometer WiFi link between a KrakenSDR, and his base station running DF Aggregator. The WiFi link is achieved by using a ALFA Network 802.11ah (900 MHz US) adapter. The remote KrakenSDR is running on a 'DragonDeck', which is a SteamDeck gaming console with DragonOS installed on it.

In the video Aaron shows that when he transmits with his handheld radio, the remote KrakenSDR is able to provide an accurate bearing towards the transmitter. At the end Aaron also briefly tests out automatic speech transcribing via WhisperCPP.

Aarons tests were run together with @VibesGoon who shows a few great pictures of his KrakenSDR setup on his Twitter Feed.

DragonOS FocalX 1km Remote Connect to KrakenSDR/SDR4Space w/ 802.11ah (hackRF, Halow-U, SteamDeck)

Aaron also shows another picture on his Twitter feed, which also shows the SteamDeck.

PySDR Guide on DOA & Beamforming

PySDR is a free online textbook created by Dr. Marc Lichtman which explains many digital signal processing (DSP) and software defined radio (SDR) concepts in a clear, concise and easy to understand way. The guide includes multiple images and animations, as well as Python code examples.

In a recent update, Dr. Lichtman has begun adding a new chapter on Direction of Arrival (DOA) and Beamforming which are core concepts for coherent radio direction finding devices like our KrakenSDR. As with the other chapters the guide is made easy to understand with many images and animations.

The introduction reads:

Direction-of-Arrival (DOA) within DSP/SDR refers to the process of using an array of antennas to estimate the DOA of one or more signals received by that array. Once we know the direction a signal of interest is arriving from, we can isolate it from other signals/interference/jamming.

It is just like isolating a signal in the frequency domain by filtering it, except we are now working in the spatial domain (you can certainly combine both!).

We typically refer to the antennas that make up an array as elements, and sometimes the array is called a “sensor” instead. These array elements are most often omnidirectional antennas, equally spaced in either a line or across two dimensions.

DOA is a subset of beamforming techniques, where as the receiver, we are trying to steer a beam (our receiver’s antenna beam) towards the direction of an emitter. We may also steer a beam blindly across a wide range (e.g., 0 to 360 degrees) to figure out what signals are being received and from what direction.

A visual example of what happens to two signals when the interelement spacing of a direction finding antenna array is reduced below half a wavelength.