Tagged: LNB

Receiving Starlink Signals with an RTL-SDR and Ku-Band LNB

Over on YouTubedereksgc has uploaded a new video showing how to receive signals from Starlink satellites using an RTL-SDR and a standard Ku band LNB. Note that this setup simply receives the raw signals, and it does not allow you to connect to the Starlink service.  

In the video, dereksgc first introduces Starlink satellites and explains what signals they transmit, referencing a paper on the structure of the Starlink Ku-band downlink by researchers at the University of Texas. He notes that the signals are strong enough that a single LNB without a dish is sufficient for receiving them. An LNB is a feedhorn antenna, low-noise amplifier, and downconverter all-in-one. It converts the ~10.950 GHz Ku band signal of the Starlink satellites down to a frequency that the RTL-SDR can receive.

In the rest of the video, he shows a timelapse of signals being received. The signal's doppler shift can be seen and heard as the satellite passes over.

Receiving Starlink signals with RTL-SDR

Detecting Starlink Satellites with a Portable Raspberry Pi + RTL-SDR

Over on his YouTube channel "saveitforparts" has in the past created a portable homemade 'tricorder' which was a boxed up Raspberry Pi with multiple sensors including an RTL-SDR. One new application he's found for the tricorder is the ability to detect the beacons from Starlink satellites using the RTL-SDR and an LNB.

Starlink beacons typically transmit at around 11.325 GHz, so to receive them with an RTL-SDR a downconverter and antenna such as an LNB is required.

In the video he demonstrates the hardware in use, and shows some of the beacons being received on the spectrum, via the tricorders built in LCD screen.

Detecting Starlink Satellites With DIY Tricorder

Bullseye TCXO LNB for QO-100 33% Off Sale Ending Soon

On September 15 we began our 33% off stock reduction sale for the Bullseye LNB. The Bullseye is an ultra stable LNB for receiving QO-100 and other Ku-Band satellites/applications. We'll be ending this sale on Wednesday, so if you'd like to purchase a unit please order soon to avoid missing out on the sale price. The current sale price is US$19.97 including free worldwide shipping to most countries. 

To order the product, please go to our store, and scroll down until you see the QO-100 Bullseye TCXO LNB heading. Alternatively we also have stock via our Aliexpress store or on eBay.

For more information about the Bullseye and some reviews please see the original sale post.

The Bullseye LNB for QO-100

33% OFF Sale: Ultra Stable Bullseye LNB for QO-100/Es’Hail-2

Back in May we started selling the Bullseye LNB on our store, which is an ultra stable LNB for receiving QO-100 and other Ku-Band satellites/applications. We have recently managed to secure a good deal from the supplier. However, our storage warehouse is now low on space and we are hence running a 33% off stock clearance sale with the unit now priced at only US$19.97 including free worldwide shipping to most countries. 

To order the product, please go to our store, and scroll down until you see the QO-100 Bullseye TCXO LNB heading. Alternatively we also have stock via our Aliexpress store or on eBay.

What is QO-100 and an LNB?

QO-100 / Es'hail-2 is a geostationary satellite at at 25.5°E (covering Africa, Europe, the Middle East, India, eastern Brazil and the west half of Russia/Asia) providing broadcasting services. However, as a bonus it also has the world's first amateur radio repeater in geostationary orbit. Uplink is at 2.4 GHz and downlink is at 10.5 GHz.

Most SDRs do not tune all the way up to 10.5 GHz, so an LNB (low noise block) is typically used, which contains the feed, an LNA, and a downconverter which converts the 10.5 GHz frequency into a much lower one that can be received by most SDRs.

What's special about the Bullseye LNB?

In order to properly monitor signals on QO-100 an LNB with a Temperature Compensated Oscillator (TCXO) or other stabilization method is required. Most LNBs have non-stabilized crystals which will drift significantly over time on the order of 300 PPM with temperature changes.  This means that the narrowband signals used on QO-100 can easily drift out of the receive band or cause distorted reception. Software drift compensation can be used to an extent, but it works best if the LNB is somewhat stable in the first place. It is possible to hand modify a standard Ku-band LNB by soldering on a replacement TCXO or hacking in connections to a GPSDO, but the Bullseye LNB ready to use with a built in 1PPM TCXO and is cheap.

Reviews

In the past Tech Minds has reviewed this product favourably in the video shown below. In a second video he has also shown how the Bullseye can be combined with a transmit helix in order to create a dual feed uplink + downlink capable antenna.

Ultra Stable Bullseye LNB For QO-100 Es Hail2 10 kHz

F4DAV has also reviewed the unit on his website, concluding with the following statement:

As far as I know the BE01 is the first affordable mass-produced Ku-band TCXO LNB. These early tests suggest that it can be a game changer for amateur radio and other narrowband applications in the 10 GHz band. The stability and ability to recalibrate should allow even unsophisticated analog stations to tune to a 5 kHz channel and remain there for hours at a time. For SDR stations with beacon-based frequency correction, the absolute accuracy removes the need to oversample by several hundred kHz or to scan for the initial frequency offset.

There are also several posts on Twitter by customers noting good performance

Official Feature List + Specs

Features

  • Bullseye 10 kHz BE01
  • Universal single output LNB
  • Frequency stability within 10 kHz in normal outdoor environment
  • Phase locked loop with 2 PPM TCXO
  • Factory calibration within 1 kHz utilizing GPS-locked spectrum analyzers
  • Ultra high precision PLL employing proprietary frequency control system (patent pending)
  • Digitally controlled carrier offset with optional programmer
  • 25 MHz output reference available on secondary F-connector (red)

Specifications 

  • Input frequency: 10489 - 12750 MHz
  • LO frequency 9750/10600 MHz
  • LO frequency stability at 23C: +/- 10 kHz
  • LO frequency stability -20 - 60C: +/- 30 kHz
  • Gain: 50 - 66 dB
  • Output frequency: 739 - 1950 MHz (low band) and 1100 - 2150 (high band)
  • Return loss of 8 dB (739 - 1950 MHz) and 10 dB (1100 - 2150 MHz)
  • Noise figure: 0.5 dB

We note that an external bias tee power injector is required to power the LNB as it requires 11.5V - 14V to operate in vertical polarization and 16V - 19V to operate with horizontal polarization. The bias tee on the RTL-SDR Blog V3 outputs 4.5V so it is not suitable.

TechMinds: Building a 3D Printed 2.4 GHz Dual Feed Helix for QO-100

The Bullseye LNB that we have in our store is great for receiving the QO-100 amateur geostationary radio satellite which is available in some parts of the world. However it cannot be used to transmit to the satellite. Over on his YouTube channel Tech Minds shows us how to build a transmit helix antenna that connects to the Bullseye or other suitable LNB, resulting in a dual feed antenna.

The antenna that was built is based on DO8PAT's "Ice Cone Feed" design. The design requires some 3D printed parts for the mount and housing, as well as a copper wire helix, metal reflector and copper matching strip. The Bullseye fits onto the back of the helix mount. Once mounted on a dish Tech Minds shows that he was able to make contact with a friend via the QO-100 satellite with good signal strength.

2.4 GHz Dual Feed Helix Antenna For QO100

QO-100 Bullseye TCXO Ultra Stable LNB Now Available in our Store for $29.95 with Free Shipping

Back in March we posted about Othernet's release of their "Bullseye" TCXO ultra stable LNB for receiving QO-100 and other Ku-Band satellites. We have decided to now offer these for sale on our store as well.

They cost US$29.95 with free shipping to most countries. We are currently selling it over on our blog store and on our Aliexpress store. The Aliexpress store uses Aliexpress Standard Shipping which may be better for some countries like Poland, Ukraine, etc. As usual, please expect that there could be shipping delays at the moment due to the ongoing global pandemic. Since the US is not covered by QO-100 we will not be stocking Amazon USA.

QO-100 / Es'hail-2 is a geostationary satellite at at 25.5°E (covering Africa, Europe, the Middle East, India, eastern Brazil and the west half of Russia/Asia) providing broadcasting services. However, as a bonus it has allowed amateur radio operators to use a spare transponder. Uplink is at 2.4 GHz and downlink is at 10.5 GHz. Most SDRs do not tune all the way up to 10.5 GHz, so an LNB (low noise block) is typically used, which contains the feed, an LNA, and a downconverter which converts the 10.5 GHz frequency into a much lower one that can be received by most SDRs.

In order to properly monitor signals on QO-100 an LNB with a Temperature Compensated Oscillator (TCXO) or other stabilization method is required. Most LNBs have non-stabilized crystals which will drift over time with temperature changes.  This means that the narrowband signals used on QO-100 can easily drift out of the receive band or cause distorted reception. It is possible to hand modify a standard Ku-band LNB by soldering on a replacement TCXO or hacking in connections to a GPSDO, but the Bullseye LNB is ready to use and cheap.

The Othernet TCXO Ultra Stable LNB for QO-100 and Ku-Band Satellites
The Othernet TCXO Ultra Stable LNB for QO-100 and Ku-Band Satellites

The official product details read:

The Bullseye LNB is the world's most precise and stable DTH/consumer Ku-band down converter. Even a VSAT LNBF costing hundreds of dollars more is no match for the performance of the Bullseye 10K LNB. Each unit is calibrated at the factory to within 1 kHz of absolute precision against a GPS-locked spectrum analyzer. Under outdoor conditions, the stability of the LNB is well within 10 kHz of offset. As a bonus feature, the  Bullseye 10K provides access to its internal 25 MHz TCXO through the secondary F-connector. This reference output can be used to directly monitor the performance of the TCXO over time. 

Features

  • Bullseye 10 kHz BE01
  • Universal single output LNB
  • Frequency stability within 10 kHz in normal outdoor environment
  • Phase locked loop with 2 PPM TCXO
  • Factory calibration within 1 kHz utilizing GPS-locked spectrum analyzers
  • Ultra high precision PLL employing proprietary frequency control system (patent pending)
  • Digitally controlled carrier offset with optional programmer
  • 25 MHz output reference available on secondary F-connector (red)

Specifications 

  • Input frequency: 10489 - 12750 MHz
  • LO frequency 9750/10600 MHz
  • LO frequency stability at 23C: +/- 10 kHz
  • LO frequency stability -20 - 60C: +/- 30 kHz
  • Gain: 50 - 66 dB
  • Output frequency: 739 - 1950 MHz (low band) and 1100 - 2150 (high band)
  • Return loss of 8 dB (739 - 1950 MHz) and 10 dB (1100 - 2150 MHz)
  • Noise figure: 0.5 dB

We note that an external bias tee power injector is required to power the LNB as it requires 11.5V - 14V to operate in vertical polarization and 16V - 19V to operate with horizontal polarization. The bias tee on the RTL-SDR Blog V3 outputs 4.5V so it is not suitable.

There has also been an excellent review by @F4DAV and a video review by Techminds which we show below.

Ultra Stable Bullseye LNB For QO-100 Es Hail2 10 kHz

The Othernet Bullseye TCXO LNB for QO-100 Reception

Othernet have recently released their new "Bullseye" 10 kHz Ultra High Stability Universal LNB. It is currently on sale and available for US$39.95 + shipping on their store.

The LNB is designed for receiving QO-100 which is a popular geostationary amateur radio satellite positioned at 25.5°E which covers Africa, Europe, the Middle East, India, eastern Brazil and the west half of Russia/Asia. In the past we've seen several posts about people using RTL-SDRs to set up ground station monitors for this satellite, as well as special WebSDR software designed for QO-100 monitoring.

Typically an LNB with small satellite dish is used to receive QO-100 which downlinks at 10.489550 GHz. These LNB's have a built in LNA, and downconvert the signal into a frequency range receivable by an RTL-SDR. One problem is that most commercial LNBs were intended for satellite TV reception, and hence they do not need to use a very stable local oscillator. So reception of the narrowband signals on QO-100 can become a challenge if they are continuously drifting in frequency as temperature changes.

Othernet's new Bullsye LNB uses a 2PPM TCXO as the local oscillator which gives it high stability in the face of changing temperatures. To power it you'll need a bias tee or LNB power source capable of injecting 13 - 18v onto the coax line. The product description reads:

The Bullseye LNB is the world's most precise and stable Ku-band down converter. Even a VSAT LNBF costing hundreds of dollars more is no match for the performance of the Bullseye 10K LNB. Each unit is calibrated at the factory to within 1 kHz of absolute precision against a GPS-locked spectrum analyzer. As a bonus feature, the Bullseye 10K provides access to its internal 25 MHz TCXO through the secondary F-connector. This reference output can be used to directly monitor the performance of the TCXO over time.

  • Bullseye 10 kHz BE01
  • Phase locked loop with 2 PPM TCXO
  • Factory calibration within 1 kHz utilizing GPS-locked spectrum analyzers
  • Ultra high precision PLL employing proprietary frequency control system (patent pending)
  • Digitally controlled carrier offset with optional programmer
  • 25 MHz output reference available on secondary F-connector (red)
     
  • Input frequency: 10489 - 12750 MHz
  • LO frequency 9750/10600 MHz
  • LO frequency stability at 23C: +/- 10 kHz
  • LO frequency stability -20 - 60C: +/- 30 kHz
  • Gain: 50 - 66 dB
  • Output frequency: 739 - 1950 MHz (low band) and 1100 - 2150 (high band)
  • Return loss of 8 dB (739 - 1950 MHz) and 10 dB (1100 - 2150 MHz)
  • Noise figure: 0.5 dB

Over on his blog @F4DAV has uploaded a comprehensive review of the Othernet LNB which goes over the specs, construction and testing of the LNB. The review is an excellent read and he concludes with the statement:

As far as I know the BE01 is the first affordable mass-produced Ku-band TCXO LNB. Specifications are not entirely clear but these early tests suggest that it can be a game changer for amateur radio and other narrowband applications in the 10 GHz band. The stability and ability to recalibrate should allow even unsophisticated analog stations to tune to a 5 kHz channel and remain there for hours at a time. For SDR stations with beacon-based frequency correction, the absolute accuracy removes the need to oversample by several hundred kHz or to scan for the initial frequency offset.

The Othernet Bulleye High Stability LNB
The Othernet Bullseye High Stability LNB

Receiving Satellite TV Beacons with an RTL-SDR and LNB

Thank you to an anonymous contributor for sharing his experiences with trying to receive satellite TV beacons with his RTL-SDR. Satellite TV is typically up at 10.7 to 11.7 GHz which is far too high for an RTL-SDR to receive. So to receive these frequencies with the RTL-SDR he uses a satellite TV LNB (an LNB is essentially a downconverter and satellite dish feed), a DIY Bias T and a 90 cm dish. He writes:

Almost all television satellites have a special frequency for transmitting a beacon signal. The beacon signal is a reference signal with fixed frequency, power and [maybe] without modulation that is sent usually by satellites. One of the most important techniques used for satellite wave propagation studies is satellite beacon signal measurement. (http://eej.aut.ac.ir/article_433.html)

I used an universal LNB, DIY bias-T and a fixed 90cm dish pointed at 26 degrees East. By connecting 18 volts DC to LNB I am able to activate the 9750 Mhz local oscillator and horizontal operating mode of LNB.

Means that anything received with LNB between 10.7-11.7 GHz can be easily seen in 950-1950 MHz range, using RTL-SDR.

I used this set-up to receive the GEO satellites beacons. A list of beacon frequencies" http://frequencyplansatellites.altervista.org/Beacon-Telemetry_Europe-Africa-MiddleEast.html.

It is useful for measuring attenuation caused by heavy rain in Ku band or accurate dish positioning or even measuring frequency drift in LNB local oscillator caused by wind and temp change during a timespan.

It seems that the right signal is Eutelsat 21B and left Es'hail 1.

In picture 4 signal captured immediately after turning on LNB. but all others are captured after at least 5 hours of warming up.

MAYBE oscillator needs a stabilize time or temp change may caused the drift.

If you are interested in receiving these beacons, Daniel Estevez has also performed similar experiments with his RTL-SDR and an LNB as well, and has written about it on his blog.

Below we show some images of beacons shown in SDR# that the anonymous contributor received with his setup.

Receiving Starlink Signals with an RTL-SDR and Ku-Band LNB

Over on YouTubedereksgc has uploaded a new video showing how to receive signals from Starlink satellites using an RTL-SDR and a standard Ku band LNB. Note that this setup simply receives the raw signals, and it does not allow you to connect to the Starlink service.  

In the video, dereksgc first introduces Starlink satellites and explains what signals they transmit, referencing a paper on the structure of the Starlink Ku-band downlink by researchers at the University of Texas. He notes that the signals are strong enough that a single LNB without a dish is sufficient for receiving them. An LNB is a feedhorn antenna, low-noise amplifier, and downconverter all-in-one. It converts the ~10.950 GHz Ku band signal of the Starlink satellites down to a frequency that the RTL-SDR can receive.

In the rest of the video, he shows a timelapse of signals being received. The signal's doppler shift can be seen and heard as the satellite passes over.

Receiving Starlink signals with RTL-SDR

Detecting Starlink Satellites with a Portable Raspberry Pi + RTL-SDR

Over on his YouTube channel "saveitforparts" has in the past created a portable homemade 'tricorder' which was a boxed up Raspberry Pi with multiple sensors including an RTL-SDR. One new application he's found for the tricorder is the ability to detect the beacons from Starlink satellites using the RTL-SDR and an LNB.

Starlink beacons typically transmit at around 11.325 GHz, so to receive them with an RTL-SDR a downconverter and antenna such as an LNB is required.

In the video he demonstrates the hardware in use, and shows some of the beacons being received on the spectrum, via the tricorders built in LCD screen.

Detecting Starlink Satellites With DIY Tricorder

Bullseye TCXO LNB for QO-100 33% Off Sale Ending Soon

On September 15 we began our 33% off stock reduction sale for the Bullseye LNB. The Bullseye is an ultra stable LNB for receiving QO-100 and other Ku-Band satellites/applications. We'll be ending this sale on Wednesday, so if you'd like to purchase a unit please order soon to avoid missing out on the sale price. The current sale price is US$19.97 including free worldwide shipping to most countries. 

To order the product, please go to our store, and scroll down until you see the QO-100 Bullseye TCXO LNB heading. Alternatively we also have stock via our Aliexpress store or on eBay.

For more information about the Bullseye and some reviews please see the original sale post.

The Bullseye LNB for QO-100

33% OFF Sale: Ultra Stable Bullseye LNB for QO-100/Es’Hail-2

Back in May we started selling the Bullseye LNB on our store, which is an ultra stable LNB for receiving QO-100 and other Ku-Band satellites/applications. We have recently managed to secure a good deal from the supplier. However, our storage warehouse is now low on space and we are hence running a 33% off stock clearance sale with the unit now priced at only US$19.97 including free worldwide shipping to most countries. 

To order the product, please go to our store, and scroll down until you see the QO-100 Bullseye TCXO LNB heading. Alternatively we also have stock via our Aliexpress store or on eBay.

What is QO-100 and an LNB?

QO-100 / Es'hail-2 is a geostationary satellite at at 25.5°E (covering Africa, Europe, the Middle East, India, eastern Brazil and the west half of Russia/Asia) providing broadcasting services. However, as a bonus it also has the world's first amateur radio repeater in geostationary orbit. Uplink is at 2.4 GHz and downlink is at 10.5 GHz.

Most SDRs do not tune all the way up to 10.5 GHz, so an LNB (low noise block) is typically used, which contains the feed, an LNA, and a downconverter which converts the 10.5 GHz frequency into a much lower one that can be received by most SDRs.

What's special about the Bullseye LNB?

In order to properly monitor signals on QO-100 an LNB with a Temperature Compensated Oscillator (TCXO) or other stabilization method is required. Most LNBs have non-stabilized crystals which will drift significantly over time on the order of 300 PPM with temperature changes.  This means that the narrowband signals used on QO-100 can easily drift out of the receive band or cause distorted reception. Software drift compensation can be used to an extent, but it works best if the LNB is somewhat stable in the first place. It is possible to hand modify a standard Ku-band LNB by soldering on a replacement TCXO or hacking in connections to a GPSDO, but the Bullseye LNB ready to use with a built in 1PPM TCXO and is cheap.

Reviews

In the past Tech Minds has reviewed this product favourably in the video shown below. In a second video he has also shown how the Bullseye can be combined with a transmit helix in order to create a dual feed uplink + downlink capable antenna.

Ultra Stable Bullseye LNB For QO-100 Es Hail2 10 kHz

F4DAV has also reviewed the unit on his website, concluding with the following statement:

As far as I know the BE01 is the first affordable mass-produced Ku-band TCXO LNB. These early tests suggest that it can be a game changer for amateur radio and other narrowband applications in the 10 GHz band. The stability and ability to recalibrate should allow even unsophisticated analog stations to tune to a 5 kHz channel and remain there for hours at a time. For SDR stations with beacon-based frequency correction, the absolute accuracy removes the need to oversample by several hundred kHz or to scan for the initial frequency offset.

There are also several posts on Twitter by customers noting good performance

Official Feature List + Specs

Features

  • Bullseye 10 kHz BE01
  • Universal single output LNB
  • Frequency stability within 10 kHz in normal outdoor environment
  • Phase locked loop with 2 PPM TCXO
  • Factory calibration within 1 kHz utilizing GPS-locked spectrum analyzers
  • Ultra high precision PLL employing proprietary frequency control system (patent pending)
  • Digitally controlled carrier offset with optional programmer
  • 25 MHz output reference available on secondary F-connector (red)

Specifications 

  • Input frequency: 10489 - 12750 MHz
  • LO frequency 9750/10600 MHz
  • LO frequency stability at 23C: +/- 10 kHz
  • LO frequency stability -20 - 60C: +/- 30 kHz
  • Gain: 50 - 66 dB
  • Output frequency: 739 - 1950 MHz (low band) and 1100 - 2150 (high band)
  • Return loss of 8 dB (739 - 1950 MHz) and 10 dB (1100 - 2150 MHz)
  • Noise figure: 0.5 dB

We note that an external bias tee power injector is required to power the LNB as it requires 11.5V - 14V to operate in vertical polarization and 16V - 19V to operate with horizontal polarization. The bias tee on the RTL-SDR Blog V3 outputs 4.5V so it is not suitable.

TechMinds: Building a 3D Printed 2.4 GHz Dual Feed Helix for QO-100

The Bullseye LNB that we have in our store is great for receiving the QO-100 amateur geostationary radio satellite which is available in some parts of the world. However it cannot be used to transmit to the satellite. Over on his YouTube channel Tech Minds shows us how to build a transmit helix antenna that connects to the Bullseye or other suitable LNB, resulting in a dual feed antenna.

The antenna that was built is based on DO8PAT's "Ice Cone Feed" design. The design requires some 3D printed parts for the mount and housing, as well as a copper wire helix, metal reflector and copper matching strip. The Bullseye fits onto the back of the helix mount. Once mounted on a dish Tech Minds shows that he was able to make contact with a friend via the QO-100 satellite with good signal strength.

2.4 GHz Dual Feed Helix Antenna For QO100

QO-100 Bullseye TCXO Ultra Stable LNB Now Available in our Store for $29.95 with Free Shipping

Back in March we posted about Othernet's release of their "Bullseye" TCXO ultra stable LNB for receiving QO-100 and other Ku-Band satellites. We have decided to now offer these for sale on our store as well.

They cost US$29.95 with free shipping to most countries. We are currently selling it over on our blog store and on our Aliexpress store. The Aliexpress store uses Aliexpress Standard Shipping which may be better for some countries like Poland, Ukraine, etc. As usual, please expect that there could be shipping delays at the moment due to the ongoing global pandemic. Since the US is not covered by QO-100 we will not be stocking Amazon USA.

QO-100 / Es'hail-2 is a geostationary satellite at at 25.5°E (covering Africa, Europe, the Middle East, India, eastern Brazil and the west half of Russia/Asia) providing broadcasting services. However, as a bonus it has allowed amateur radio operators to use a spare transponder. Uplink is at 2.4 GHz and downlink is at 10.5 GHz. Most SDRs do not tune all the way up to 10.5 GHz, so an LNB (low noise block) is typically used, which contains the feed, an LNA, and a downconverter which converts the 10.5 GHz frequency into a much lower one that can be received by most SDRs.

In order to properly monitor signals on QO-100 an LNB with a Temperature Compensated Oscillator (TCXO) or other stabilization method is required. Most LNBs have non-stabilized crystals which will drift over time with temperature changes.  This means that the narrowband signals used on QO-100 can easily drift out of the receive band or cause distorted reception. It is possible to hand modify a standard Ku-band LNB by soldering on a replacement TCXO or hacking in connections to a GPSDO, but the Bullseye LNB is ready to use and cheap.

The Othernet TCXO Ultra Stable LNB for QO-100 and Ku-Band Satellites
The Othernet TCXO Ultra Stable LNB for QO-100 and Ku-Band Satellites

The official product details read:

The Bullseye LNB is the world's most precise and stable DTH/consumer Ku-band down converter. Even a VSAT LNBF costing hundreds of dollars more is no match for the performance of the Bullseye 10K LNB. Each unit is calibrated at the factory to within 1 kHz of absolute precision against a GPS-locked spectrum analyzer. Under outdoor conditions, the stability of the LNB is well within 10 kHz of offset. As a bonus feature, the  Bullseye 10K provides access to its internal 25 MHz TCXO through the secondary F-connector. This reference output can be used to directly monitor the performance of the TCXO over time. 

Features

  • Bullseye 10 kHz BE01
  • Universal single output LNB
  • Frequency stability within 10 kHz in normal outdoor environment
  • Phase locked loop with 2 PPM TCXO
  • Factory calibration within 1 kHz utilizing GPS-locked spectrum analyzers
  • Ultra high precision PLL employing proprietary frequency control system (patent pending)
  • Digitally controlled carrier offset with optional programmer
  • 25 MHz output reference available on secondary F-connector (red)

Specifications 

  • Input frequency: 10489 - 12750 MHz
  • LO frequency 9750/10600 MHz
  • LO frequency stability at 23C: +/- 10 kHz
  • LO frequency stability -20 - 60C: +/- 30 kHz
  • Gain: 50 - 66 dB
  • Output frequency: 739 - 1950 MHz (low band) and 1100 - 2150 (high band)
  • Return loss of 8 dB (739 - 1950 MHz) and 10 dB (1100 - 2150 MHz)
  • Noise figure: 0.5 dB

We note that an external bias tee power injector is required to power the LNB as it requires 11.5V - 14V to operate in vertical polarization and 16V - 19V to operate with horizontal polarization. The bias tee on the RTL-SDR Blog V3 outputs 4.5V so it is not suitable.

There has also been an excellent review by @F4DAV and a video review by Techminds which we show below.

Ultra Stable Bullseye LNB For QO-100 Es Hail2 10 kHz

The Othernet Bullseye TCXO LNB for QO-100 Reception

Othernet have recently released their new "Bullseye" 10 kHz Ultra High Stability Universal LNB. It is currently on sale and available for US$39.95 + shipping on their store.

The LNB is designed for receiving QO-100 which is a popular geostationary amateur radio satellite positioned at 25.5°E which covers Africa, Europe, the Middle East, India, eastern Brazil and the west half of Russia/Asia. In the past we've seen several posts about people using RTL-SDRs to set up ground station monitors for this satellite, as well as special WebSDR software designed for QO-100 monitoring.

Typically an LNB with small satellite dish is used to receive QO-100 which downlinks at 10.489550 GHz. These LNB's have a built in LNA, and downconvert the signal into a frequency range receivable by an RTL-SDR. One problem is that most commercial LNBs were intended for satellite TV reception, and hence they do not need to use a very stable local oscillator. So reception of the narrowband signals on QO-100 can become a challenge if they are continuously drifting in frequency as temperature changes.

Othernet's new Bullsye LNB uses a 2PPM TCXO as the local oscillator which gives it high stability in the face of changing temperatures. To power it you'll need a bias tee or LNB power source capable of injecting 13 - 18v onto the coax line. The product description reads:

The Bullseye LNB is the world's most precise and stable Ku-band down converter. Even a VSAT LNBF costing hundreds of dollars more is no match for the performance of the Bullseye 10K LNB. Each unit is calibrated at the factory to within 1 kHz of absolute precision against a GPS-locked spectrum analyzer. As a bonus feature, the Bullseye 10K provides access to its internal 25 MHz TCXO through the secondary F-connector. This reference output can be used to directly monitor the performance of the TCXO over time.

  • Bullseye 10 kHz BE01
  • Phase locked loop with 2 PPM TCXO
  • Factory calibration within 1 kHz utilizing GPS-locked spectrum analyzers
  • Ultra high precision PLL employing proprietary frequency control system (patent pending)
  • Digitally controlled carrier offset with optional programmer
  • 25 MHz output reference available on secondary F-connector (red)
     
  • Input frequency: 10489 - 12750 MHz
  • LO frequency 9750/10600 MHz
  • LO frequency stability at 23C: +/- 10 kHz
  • LO frequency stability -20 - 60C: +/- 30 kHz
  • Gain: 50 - 66 dB
  • Output frequency: 739 - 1950 MHz (low band) and 1100 - 2150 (high band)
  • Return loss of 8 dB (739 - 1950 MHz) and 10 dB (1100 - 2150 MHz)
  • Noise figure: 0.5 dB

Over on his blog @F4DAV has uploaded a comprehensive review of the Othernet LNB which goes over the specs, construction and testing of the LNB. The review is an excellent read and he concludes with the statement:

As far as I know the BE01 is the first affordable mass-produced Ku-band TCXO LNB. Specifications are not entirely clear but these early tests suggest that it can be a game changer for amateur radio and other narrowband applications in the 10 GHz band. The stability and ability to recalibrate should allow even unsophisticated analog stations to tune to a 5 kHz channel and remain there for hours at a time. For SDR stations with beacon-based frequency correction, the absolute accuracy removes the need to oversample by several hundred kHz or to scan for the initial frequency offset.

The Othernet Bulleye High Stability LNB
The Othernet Bullseye High Stability LNB

Receiving Satellite TV Beacons with an RTL-SDR and LNB

Thank you to an anonymous contributor for sharing his experiences with trying to receive satellite TV beacons with his RTL-SDR. Satellite TV is typically up at 10.7 to 11.7 GHz which is far too high for an RTL-SDR to receive. So to receive these frequencies with the RTL-SDR he uses a satellite TV LNB (an LNB is essentially a downconverter and satellite dish feed), a DIY Bias T and a 90 cm dish. He writes:

Almost all television satellites have a special frequency for transmitting a beacon signal. The beacon signal is a reference signal with fixed frequency, power and [maybe] without modulation that is sent usually by satellites. One of the most important techniques used for satellite wave propagation studies is satellite beacon signal measurement. (http://eej.aut.ac.ir/article_433.html)

I used an universal LNB, DIY bias-T and a fixed 90cm dish pointed at 26 degrees East. By connecting 18 volts DC to LNB I am able to activate the 9750 Mhz local oscillator and horizontal operating mode of LNB.

Means that anything received with LNB between 10.7-11.7 GHz can be easily seen in 950-1950 MHz range, using RTL-SDR.

I used this set-up to receive the GEO satellites beacons. A list of beacon frequencies" http://frequencyplansatellites.altervista.org/Beacon-Telemetry_Europe-Africa-MiddleEast.html.

It is useful for measuring attenuation caused by heavy rain in Ku band or accurate dish positioning or even measuring frequency drift in LNB local oscillator caused by wind and temp change during a timespan.

It seems that the right signal is Eutelsat 21B and left Es'hail 1.

In picture 4 signal captured immediately after turning on LNB. but all others are captured after at least 5 hours of warming up.

MAYBE oscillator needs a stabilize time or temp change may caused the drift.

If you are interested in receiving these beacons, Daniel Estevez has also performed similar experiments with his RTL-SDR and an LNB as well, and has written about it on his blog.

Below we show some images of beacons shown in SDR# that the anonymous contributor received with his setup.