Tagged: upconverter

Potentially Receiving up to 10 GHz with an RTL-SDR and Multiple SUP-24000 Downconverters

Back in 2016 KD0CQ discovered that a $5 DirectTV device with model name SUP-2400 could be used as a downconverter with an RTL-SDR for receiving frequencies of up to 4.5 GHz. A downconverter is a device that converts high frequencies such as 4.5 GHz down into a frequency actually receivable by the RTL-SDR. The SUP-2400 is able to be modified into a useful downconverter by opening it up and manually removing some mixing harmonic filters.

In his latest post KD0CQ shows how you could combine four modified SUP-2400 downconverters to create a quarduple conversion mixer which allows you to receive up to 10 GHz. The post goes into the mixing math and practicalities of this idea. KD0CQ writes that some amplification will most likely be required to push the signal through, and in the past he’s managed to receive up to 7.5 GHz.

The SUP-2400 Directv upconverter that can be converted into a downconverter.
The SUP-2400 DirecTV device that can be converted into a downconverter.

Using a Beam Deflection Tube as a Mixer for an RTL-SDR Upconverter

Over on YouTube user Full spectrum technician has uploaded an interested video where he shows how he used a beam deflection tube to create an upconverter for his RTL-SDR. A beam deflection tube is a type of vacuum tube that can be used as a mixer. If you aren’t aware, a vacuum tube (a.k.a tube or valve) is an electrical component that was used in electrical equipment heavily back in the first half of the 1900’s. They could be used to implement circuits like amplifiers, mixers, switches, oscillators and more. Even today they are still used in some high end audio equipment because many people believe they produce superior audio quality. Full spectrum technician writes on his video:

A simple test using a 6ME8 beam deflection tube as a balanced mixer up converter for an RTL-SDR to enable HF reception.

The only problem I had was too much conversion gain. Even with a relatively short antenna, and literally starving the tube for voltage, the signal output levels were high enough that I had to crank back the gain of the RTL SDR and/or use padding on the input of the RTL-SDR.

The LO was feed to grid 1 for common mode input.
The antenna was feed to the two deflection plates via a transformer as a differential input.
The output was taken from the two anode plates via a transformer as a differential output.

That resulted in the LO balancing it’s self out on the output so that the LO would not overload the front end of the receiver.

Operating voltages at the time were..
20V anode.
5V deflection plates.
20V accelerator grid.
Cathode tied to ground.

Using a beam deflection vacuum tube as a mixer for an RTL-SDR up converter.

Using the SUP-2400 Downconverter with an LNA and RTL-SDR to Receive 2.4 GHz Video

Earlier in June YouTube user T3CHNOTURK posted a video demonstrating him receiving signals above the maximum 1.7 GHz range of the RTL-SDR by using a modified SUP-2400 downconverter. Back in April it was discovered by KD0CQ that a $5 DirecTV SUP-2400 circuit could be modified and turned into a downconverter for use with the RTL-SDR.

Now T3CHNOTURK has uploaded a new video showing more demonstrations of the RTL-SDR + SUP-2400 combo in action. This time he adds a PGA-103 based LNA to boost the signal strength, which gives him better effective range. In the video he shows reception of a wireless keyboard once again, and then goes on to show him receiving 2.4 GHz analog PAL video using the RTL-SDR program TVSharp. The picture is not particularly clear, but it is a decent demonstration.

RTLSDR, TVsharp 2.4 Ghz video receiver moded SUP-2400 & pga-103 LNA

A Demonstration of the RTL-SDR Receiving WiFi and 2.4 GHz ISM with a Modded SUP-2400 Downconverter

Back in April we posted about how KD0CQ found that he could receive signals up to 4.5 GHz with an RTL-SDR by using a $5 downconverter for DirecTV called the SUP-2400. The RTL-SDR can only receive up to a maximum frequency of about 1.7 GHz, but the SUP-2400 downconverter can be modified to convert frequencies at around 2.4 GHz down into a range receivable by the RTL-SDR.

When we first posted the story the instructions for modifying the SUP-2400 to use as a downconverter weren’t uploaded yet, but they are now. The modification requires decent soldering skills as it involves desoldering a few small SMD components and bridging some points with wires.

Over on YouTube user T3CHNOTURK has uploaded a video showing the downconverter in action. With the SUP-2400 downconverter and RTL-SDR he is able to receive some WiFi at 2.447 GHz as well as signals from a wireless keyboard at 2.465 GHz

RTLSDR Receiveing wifi & 2.4 ghz ism band with moded SUP-2400 Downconverter

Receiving up to 4.5 GHz with an RTL-SDR and a $5 Directv Downconverter

KD0CQ has recently been experimenting with trying to receive signals at frequencies of up to 4.5 GHz with an RTL-SDR and downconverter. Since a typical R820T/2 RTL-SDR’s maximum frequency limit is about 1.7 GHz, an external downconverter circuit is required. A downconverter converts high frequencies down into the range receivable by the RTL-SDR. For example a downconverter with a 2.4 GHz local oscillator would convert a 3.5 GHz signal down to 1.1 GHz, which can be easily received by an RTL-SDR.

The secret to doing this cheaply is revealed by KD0CQ. He shows that a very cheap $5 Directv SUP-2400 upconverter can be converted into a 2.4 GHz downconverter simply by removing some filters. He writes that he hasn’t uploaded the full set of steps to modify the SUP-2400 yet, but he intends to do so in the near future.

There is also a discussion about this mod on Reddit. Several posters have been discussing what applications a cheap downconverter could open up. Some mentioned applications include receiving various satellites in the C/S bands, DECT cordless phones @ 1.9 GHz, SiriusXM satellite radio @ 2.3 GHz, ISM @ 2.4 GHz, RADARs, RC aircraft control/telemetry/video and ham beacons.

The SUP-2400 Directv upconverter that can be converted into a downconverter.
The SUP-2400 Directv upconverter that can be modified into a downconverter.

$5 Microwave Downconverter for the RTLSDR KD0CQ

A review of the Soft66RTL3 RTL-SDR + Upconverter + RF Amp Combination Circuit

Over on the SWLing Post blog contributor Mike Ladd has posted up a review of the Soft66RTL3 software defined radio. The Soft66RTL3 is a fully enclosed SDR unit that consists of a standard mini RTL-SDR dongle, a selectable upconverter circuit, several switchable bandpass filters for HF and a UPC1688 RF amp which is enabled in HF mode and is controllable through a trimmer pot. The selectable bandpass filters are from 0.4 MHz to 1.2 MHz, 1.2 MHz to 5 MHz, 5 MHz to 15 MHz and 15 MHz to 30 MHz. The unit also comes enclosed in an aluminum box with an SMA input connector and Micro-B USB port.

The Soft66RTL3 is custom produced by Kazunori Miura (JA7TDO) who is based in Japan. The Soft66RTL3 sells for $40 USD shipped, or $46 USD shipped with registered air mail. 

In the review Mike shows us the insides of the Soft66RTL3 and discusses its features. Later he also shows an installation and user guide.

The Soft66RTL3 Unit
The Soft66RTL3 Unit

RTLSDR4Everyone: Review of the Nooelec Ham-It-Up V1.3 and Balun 1:9

Over on his blog rtlsdr4everyone, Akos has posted two new reviews. One post reviews the latest ham-it-up v.13 upconverter and the other reviews the “Balun 1:9” impedance transformer.

An upconverter allows you to receive HF frequencies (0-30 MHz) with an RTL-SDR which has a lower frequency limit of 24 MHz.  The ham-it-up upconverter was one of the first upconverters to go on the market that targeted users of the popular RTL-SDR dongle. Over the years the ham-it-up has slowly been revised and now it is up at version 1.3. The biggest changes in the latest version are a revised design that uses the ADE-1 in reverse (better VLF operation), a presoldered oscillator and it also now includes the previously optional noise source by default. 

In his review Akos compares the ham-it-up v1.3 to the older v1.2 model. His results show that the revised design seems to have better immunity to noise and better FM broadcast filtering. He also tests out the new battery power via connection and shows that using battery power is less noisy.

Previously we posted a review comparing the ham-it-up v1.0, SpyVerter and Nobu’s Japanese upconverter. Although the ham-it-up v1.3 is much improved and we have not tested it, we still believe the SpyVerter is the better upconverter choice at the moment due to its better architectural design and included metal case, though Akos does point out that the ham-it-up is currently about $15 USD cheaper and has a passthrough switch.

Ham-it-up v1.3 vs ham-it-up v1.2
Ham-it-up v1.3 vs ham-it-up v1.2

In his second post Akos reviews the Balun 1:9 which is a $10 balun that is designed for attaching a long wire antenna to the ham-it-up. The goal of the balun 1:9 is to transform the high impedance long wire antenna down to around 50/75 Ohms for the receiver. In Akos’ results he writes that he mostly see’s identical or better performance with the balun connected.

The Nooelec balun 1:9
The Nooelec balun 1:9

To add to Akos’ review, we want to note that we think that there might be some confusion over baluns and ununs. We wonder if a 9:1 unun (instead of a balun) should be used for a long wire antenna, since a long wire is an unbalanced antenna. We think a balun should be used for a balanced antenna such as a dipole. In his review Akos also found that connecting two longwire antennas to the spring terminals improved reception. This may have possibly been because adding two longwires essentially created a balanced dipole antenna. To implement a longwire antenna unun with a balun, we think that the second terminal and coax shield should be connected to a good ground source like a cold water pipe. If you have knowledge on this topic please comment to confirm or expand on our theory.

Review of the SpyVerter Upconverter

The SpyVerter is a new upconverter that has recently gone on sale. It is created by Youssef (he programmed SDR# and worked on the development of the Airspy SDR) and Bob W9RAN (of rantechnology.com and youtube.com/user/ranickel). In this post we'll review the SpyVerter and compare it against some other up converters that we have used in the past.

Background

Radio transmissions between 0 - 30 MHz can travel all the way around the world. At these frequencies many interesting signals such as international shortwave radio, ham radio communications and several military transmissions exist.

The RTL-SDR's lowest tunable frequency is 24 MHz, and so it can only receive a small portion of the interesting transmissions that occur between 0 - 30 MHz. In order to listen to frequencies below 24 MHz an upconverter is required (either that or perform the direct sampling mod). An upconverter works simply by shifting these lower frequencies up to a higher frequency that the RTL-SDR can receive. For example, a 5 MHz signal might be upconverted to 105 MHz.

To date, most decent upconverters (such as the popular ham-it-up upconverter) have been based on the double balanced mixer architecture implemented by the ADE-1 mixer chip from Minicircuits. The SpyVerter on the other hand is based on a different type of architecture which is inspired by the H-mode mixer design that was used in the unreleased HF7070 communications receiver. The expected major advantage that this design has over a ADE-1 based design is better IIP3 performance. This essentially means that strong signals will not cause overloading issues in the SpyVerter, meaning less noise and spurious images. 

Another advantage of the SpyVerter is its use of a 120 MHz low phase noise/low jitter clock, meaning less reciprocal mixing and thus greater SNR and a lower noise floor. A low phase noise clock is essential for getting good performance when receiving the very narrowband signals that are typically found between 0 - 30 MHz. The other upconverters do not specify their phase noise performance as far as we can tell.

The SpyVerter comes in a metal box, with three SMA adapters. A metal box is great because it helps keep strong interfering signals from entering the signal path, as well as stabilizing the internal temperature, keeping frequency drift to a minimum. Most upconverters only come with a metal box as a paid add on, but the SpyVerter comes in one by default.

Although the SpyVerter is designed to be used with the Airspy, it is fully compatible with the RTL-SDR as well. The SpyVerter can be powered via a USB cable, or via 5V bias tee (and this is compatible with the bias tee used on the RTL-SDR Blog units sold by us).

The SpyVerter in enclosure with bundled adapters.
The SpyVerter in enclosure with bundled adapters.

Continue reading