Tagged: sdrplay

Receiving Jupiter Noise Bursts with an SDRplay RSP1

Over on YouTube user MaskitolSAE has uploaded a video showing him receiving some noise bursts from Jupiter with his SDRplay RSP1. The planet Jupiter is known to emit bursts of noise via natural ‘radio lasers’ powered partly by the planets interaction with the electrically conductive gases emitted by Io, one of the the planets moons. When Jupiter is high in the sky and the Earth passes through one of these radio lasers the noise bursts can be received on Earth quite easily with an appropriate antenna 

In his video MaskitolSAE shows the 10 MHz of waterfall and audio from some Jupiter noise bursts received with his SDRplay RSP1 at 22119 kHz. According to the YouTube description, it appears that he is using the UTR-2 radio telescope which is a large Ukrainian radio telescope installation that consists of an array of 2040 dipoles. A professional radio telescope installation is not required to receive the Jupiter bursts (a backyard dipole tuned to ~20 MHz will work), but the professional radio telescope does get some really nice strong bursts as seen in the video.

The UTR-2 Radio Telescope. Photo Attr. Oleksii Tovpyha (Link)

Running an SDRplay RSP2 on a Raspberry Pi 3 with CubicSDR

Over on YouTube user Kevin Loughin has uploaded a video demonstrating his SDRplay RSP2 running on a Raspberry Pi 3. The software he uses is CubicSDR which is a multiplatform program that is similar to software like SDRUno, SDR#, SDR-Console, HDSDR etc. The video shows CubicSDR running, but the interface is quite slow and laggy, although the audio is at least not choppy.

In a previous post we showed one of Kevin’s earlier videos where he does a tutorial and some scripts that help to actually set up the SDRplay drivers and CubicSDR in Linux. In the new video he first goes over a specific hack that needs to be done in Raspbian to fix the PulseAudio server. Then he explains that you can run the Linux build script mentioned in his previous tutorial video and it should work on the Raspberry Pi 3 just fine. Finally he mentions that CubicSDR and the SDRplay use a high amount of CPU processing on the pi3 so some sort of cooling mechanism is required or the pi3 may throttle down its CPU.

Video Tutorial on Setting up the SDRplay RSP2 in Linux

Over on YouTube user Kevin Loughin has recently uploaded a video that shows a step by step guide on how to set up an SDRplay RSP2 in Linux. Setting up the RSP2 in Linux is not a simple task, but Kevin’s video walks us through the entire process step by step. At the end of the process you’ll be set up with the SoapySDR framework which is the glue software that sits between the hardware driver and SDR software. You’ll also have the CubicSDR software installed which is what you use for general browsing and listening. CubicSDR is similar to SDRuno, SDR#, HDSDR etc.

Over on his blog he’s also posted the steps in text form, and uploaded some of the scripts that he’s created to simplify the install process.

Decoding the LilacSat-1 FM to Digital Voice Transponder

LilacSat-1 is an educational CubeSat built by students from the Harbin Institute of Technology (HIT) in China. It was recently launched from the ISS on 25 May 2017 as part of the QB50 science experiment to explore the lower thermosphere, and it is expected to stay in orbit for about 3 months. Apart from BPSK telemetry at 145.935 MHz, LilacSat-1 is interesting because it contains on board an FM to Codec2-BPSK digital voice amateur radio transponder at 145/436 MHz (uplink/downlink). It is probably the first amateur radio satellite to contain an FM to digital voice transponder.

To decode LilacSat-1 digital voice and telemetry you can use a Linux live CD provided by HIT, or download the GNU Radio decoder directly from the LilacSat-1 information page on the HIT website. The GNU Radio program can be used with any GNU Radio compatible SDR, such as an RTL-SDR.

Over on his blog, destevez has also created a lower latency digital voice decoder for LilacSat-1 that can found in the gr-satellites GNU Radio package, which contains decoders for multiple satellites as well. Destevez has also written about the Codec2 implementation used in LilacSat-1 in one of his previous posts.

An example of LilacSat-1 being decoded has also been uploaded by YouTube by Scott Chapman. In his test he used an RTL-SDR to work the pass live, but in the video shows an offline decoding received by his SDRplay which was also monitoring the same pass.

Mike’s SDRuno Tutorial Series

Mike Ladd, one of the top volunteer contributors of the SDRplay community was recently hired by SDRplay officially and has now been working on a fairly comprehensive SDRuno tutorial series over on the SDRplay YouTube channel. SDRuno is the official software for the SDRplay line of SDRs and is a slightly modified version of the ‘Studio1’ software which was previously acquired by SDRplay. SDRuno also supports the RTL-SDR.

SDRuno is a complex piece of software with many features and settings, so it’s great to see a comprehensive video tutorial like this. Mike’s tutorial series currently has 10 episodes, and discusses things like the basic layout and settings of SDRuno, using Virtual Audio Cable (VAC), noise reduction, memories, calibration, DSD, notch filters and FM broadcast with RDS. More videos are probably still on the way.

XRIT Decoder for GOES Satellites: Supports Airspy R2/Mini and SDRplay RSP2

Over on his blog USA-Satcom has released his XRIT (LRIT/HRIT) decoder for GOES satellites. The software requires a licence and costs $100 USD. GOES-13 (East), GOES-15 (West) and the new GOES-16 are geosynchronous orbiting satellites that broadcast very nice high resolution weather images of the entire visible disk of the earth. The transmit their LRIT/HRIT signals at about 1.7 GHz at fairly weak power, which means that a good LNA and dish set up is critical to be able to receive them. A dish size of about 1 meter, or an equivalent grid or Yagi is recommended as the lowest starting point.

GOES Full Disk Image of the Earth
GOES Full Disk Image of the Earth

USA-Satcom’s decoder is Windows based and comes with a nice GUI. Some portions of the code are based on the Open Satellite Project created by Lucas Teske. It currently supports the Airspy R2/Mini and the SDRplay RSP2 software defined radios.

The software is not free, it costs $100 USD for the licence. To help curb illegal distribution of his software which has been rampant in the past, USA-Satcom also requests that you show some proof of a working setup which is capable of receiving the GOES signal before inquiring about the software.

If you are also interested, USA-Satcom did an interesting talk at Cyberspectrum a few months ago, and he has also recently uploaded his slides.

Screenshot of USA-Satcoms GOES XRIT decoder.
Screenshot of USA-Satcoms GOES XRIT decoder.

Instructions and a Review of the SDRplay RSP1 Metal Enclosure Upgrade Kit

Mike (kd2kog), our partner on the SDRplay RSP1 Metal case upgrade kit has recently uploaded an instruction set that shows step by step how to perform the upgrade (pdf). It shows how to dismantle the RSP1 from the plastic case, install the included broadcast FM filter, mount the PCB and shows where all the nuts and washers go.

The metal case upgrade is something we brought out back in March. It allows owners of the SDRplay RSP1 SDR to upgrade the default plastic case to a sturdy metal one for improved ruggedness and RF shielding. It also comes with an included broadcast FM filter to help reduce strong FM images which are often a problem on some bands with the RSP1. It also comes with a handy travel case. If you want to purchase the enclosure we have it available on our store at www.rtl-sdr.com/store, and also on US Amazon, both with free shipping.

Also, over on his blog K5ACL has posted a short review of the case.

Image of the RSP1 Metal Case from K5ACL's review
Image of the RSP1 Metal Case from K5ACL’s review

Using the SDRplay with a W4OP Loop

Over on YouTube user SignalSearch has uploaded a video showing and explaining the use of a W4OP magnetic loop antenna on a SDRplay SDR. On the video he explains what the W4OP loop is, and demonstrates it’s operation in SDR-Console with his SDRplay. The video description reads:

Experiment: Hookup the SDRPlay RSP 1 (SDR receiver) to the W4OP (Small Transmitting Loop). I’ve always wanted to try hooking up a loop to my SDRPlay. Though different from an active receive loop (one that has a Low Noise Amplifier), this loop can be used for transmitting @ QRP levels – but works great for shortwave listening too! For more info. please visit my website @ www.k5acl.net!