Ships: New RTL-SDR Compatible Android App for AIS Reception and Plotting

Today an Android app programmer sent a message to let us know about his new open source RTL-SDR compatible AIS app called Ships.  This is a free app that allows you to decode AIS signals, and plot them directly onto an OpenStreetMap/OpenSeaMap or output the data via UDP to another mapping program.

Ships also has another interesting feature which is that it will automatically determine the PPM offset of a dongle, meaning that generic dongles without TCXO’s can be easily used for AIS. It appears to do this by using the AIS signals themselves, so you will need sufficient AIS traffic in your area for the calibration to work.

AIS stands for Automatic Identification System, and is a system used to track the locations of marine vessels. It is similar to ADS-B in that nearby ships can be plotted and tracked on a map by using an RTL-SDR as the receiver. We have a tutorial for PC available here.

The app can be downloaded for free on Google Play, and the open source code is available on GitHub.

Ships RTL-SDR Android App Screenshot
Ships RTL-SDR Android App Screenshot

The PandwaRF RF Analysis Tool

Recently we heard about the PandwaRF Portable Analyzer (previously known as the GollumRF). This is not an SDR, but can probably be described as a programmable and computer controlled radio. It appears to be based on the Yardstick One design which is made by Micheal Ossmann, the creator of the HackRF. Both the Yardstick One and PandwaRF are based on the CC1111 sub-1 GHz RF transceiver chip. These types of pseudo-sdr’s can be very useful for reverse engineerin, analyzing and experimenting with simple digital signals.

For example it could be used to capture data from any ASK/OOK/MSK/2-FSK/GFSK modulation in the 300 – 928 MHz band. You can then easily analyze the data, and the restransmit the same or a modified signal. The same could be done with a TX capable SDR like the HackRF, but doing so tends to require a lot more work.

The difference between the Yardstick One and PandwaRF appears to be mainly in the connection interface. The PandwaRF is essentially the Yardstick One with a Bluetooth LE connectivity and an Android/iOS smartphone app. USB connectivity for Linux still exists. It also has an internal battery whereas the Yardstick One does not. They wrote a post comparing the RTL-SDR, Yardstick One and PandwaRF here.

The device seems to be new, as it just starting shipping in November and the first batch is still being sold. It costs 145 euros and appears to originate from the EU. There is also a ‘mini’ version in pre-order which also costs 145 euros. In comparison the Yardstick One costs about $99 – $145 USD depending on the shop you choose.

The PandwaRF
The PandwaRF
PandwaRF Android App
PandwaRF Android App

SDR-Console V3 Preview Updated to Support the SDRplay RSP2

Recently Jon from the SDRplay team wrote in to let us know that SDR-Console V3 (preview version) has just been updated and it now supports the RSP2. The RSP2 is the successor to the popular RSP1 software defined radio. It has improved filtering, more input ports, improved LNA, and just overall improved performance. See our initial RSP2 review here. They write:

Many thanks to Simon Brown for updating SDR-Console V3 Preview to fully support both the RSP1 and the RSP2- you can download the software from http://sdr-radio.com/v3_preview_downloads (be sure to click on the software link under where it says ‘Downloads’ unless you want to download the software from the advertisers who support Simon’s work!)

As new YouTube demo videos of SDR-Console V3 in action become available, we will add them to the playlists on our YouTube Channel: www.youtube.com/c/SDRplayRSP

The RSP2 now supports its native SDRUno software, HDSDR through an extIO module, CubicSDR and now SDR-Console V3.

The RSP2
The RSP2

Cloud-SDR Releases New Client and Server Software for the RTL-SDR

Cloud-SDR is a company that aims to make using SDR over the cloud/network/internet easier. It allows you to set up a remote SDR server that you can access from anywhere. Previously Cloud-SDR was still in development, but now we recently received mail from Cloud-SDR programmer Sylvain that the client and server software has just been released for the RTL-SDR. It appears that it also currently supports the Airspy, BladeRF, SDRplay and PerseusSDR.

The email reads:

I am pleased to inform you that we have just released two softwares compatible with your devices :

  • The Cloud-SDR free client, a windows + Linux (to be released soon) client able to run locally RTL-SDR devices (check the news/turorials, we have featured several times dongles from your blog)
  • The Cloud-SDR streaming server (codenamed SDRNode) , a windows + Linux (to be released soon) multi-user configurable streaming server.

SDRNode is a commercial software but an evaluation version is already available. Both softwares can be downloaded from our store after registration.

Source code for the drivers are already released as open source software through our GitHub repo: https://github.com/cloud-sdr

You can find more details here :

The Cloud-SDR Network
The Cloud-SDR Network

To download the software you must register an account with them at https://store.cloud-sdr.com/my-account. The client is free but the server costs 110 euros for personal and hobby usage, although a 30 day trial version is available. Currently only the Windows Client and Server are available, but they write that Linux should be available soon.

We tested the software out with an RTL-SDR V3. The client installation process was a simple wizard and after installation we launched the Cloud-SDR client by opening the shortcut “cSDRc” in the Start Menu. We found that the hardware needed to be plugged in first for the client to recognize it. The client is basic, but can already demodulate USB/LSB/CW/AM/FMN without trouble. It also has some interesting features:

  1. Dual channel receiver: RXA and RXB are two totally independent receivers;
  2. Geographic integration: Display on map beacons, ADS-B reported airliners, known HF broadcast stations or any geo-localized information coming from the SDRNode server;
  3. GPS compatibility: plug a GPS receiver to your computer and track your location on the map, record signals with your position for later processing (coverage mapping etc.); display the UTC time;
  4. Digital Terrain Elevation: See the terrain elevation around your position, or in the direction of the antenna directly on the map (requires to download the free SRTM3 files from NASA, with 90m resolution);
  5. MP3 audio recording: record to mp3 the demodulated streams to reduce disk requirements;
  6. Chat with other users connected to the SDRNode Group: when used as a remote client for the SDRNode streaming server, you can interact with other users with messages or station spotting;
  7. Time-domain analysis: the MSR mode enables analysis of any sub-band and displays in real time the time domain signals of the selected spectrum portion. This sub-band can also be recorded (with geographic position if GPS is connected) and processed with provided MATLAB®.
The Cloud-SDR Client Software
The Cloud-SDR Client Software

Next we tested the evaluation version of the SDR-Node server software on a remote laptop with an RTL-SDR connected. Again installation was easy, just follow the wizard after ordering the evaluation version. SDR-Node installs itself as a Windows service which starts up automatically on boot. To set up the Node we followed the guide shown in the video below. To connect with the client you need to know the IP address of the remote computer, the port is 8080, and the certificate is displayed on the server PC SDR-Node dashboard. We note that we also had to disable the Windows firewall to get it to connect, but it should be possible to also add SDR-Node to the firewall whitelist.

Using the SDRNode wizard

When streaming it appears that only 1/4 of the SDR sample rate can only be sent over the network. There are also compression options which can be used on slower networks or the internet to reduce bandwidth. Using the interface while in network mode was slightly laggy, but the waterfall and audio was smooth.

Overall everything worked as expected and it looks to be a very useful tool. More information is available at cloud-sdr.com. Some already existing alternative remote SDR streaming software that supports the RTL-SDR includes rtl_tcp, the SDR Console V2 server, OpenWebRX and ShinySDR.

Building an SDR Transmitter using GPIO Pins on an FPGA

Recently an RTL-SDR.com reader named Jon wrote in and wanted to share his project called FPGA-TX. FPGA-TX is software that provides low-cost SDR transmit capabilities on an FPGA. It works in a similar way to RPiTX which is by simply turning the GPIO pins on and off very quickly in such as way that it generates any desired AM/FM/SSB transmission. These methods are crude and require external analog filtering, but can be used for creating almost any sort of RF transmission at a wide range of frequencies extremely cheaply. These sorts of cheap transmitters are great companions to low cost SDR dongles like the RTL-SDR.

Jon’s project runs on FPGA boards and currently supports the Digilent Nexys 4 and Digilent CMOD A7 ($75) FPGA boards. An FPGA is an integrated circuit that can be easily reconfigured to implement various different digital circuits.

FPGA-TX can transmit at frequencies of up to 400 MHz and current supports AM, FM, LSB, USB, Wideband FM and Wideband FM Stereo transmission modes. It runs on Linux. The FPGA transmitter has been tested combined together with an amplifier and filter. It can also interface with a GPS unit for clock calibration.

An FPGA Based Transmitter. In the photo: FPGA, Amplifier, Filter, Attenuator, TX/RX Switch.
An FPGA Based Transmitter. In the photo: FPGA, Amplifier, Filter, Attenuator, TX/RX Switch.
The FPGA-TX Ubuntu Interface.
The FPGA-TX Ubuntu Interface.

Outernet Patch Antenna Pan-Tilt Servo

Over on YouTube user Tomi Simola has uploaded a video showing his servo based Outernet satellite antenna tracker. Outernet uses L-band geostationary satellites which means that they are at a fixed position in the sky. Optimal reception of the Outernet and other L-Band satellite signals can be obtained by pointing the patch antenna towards the satellite.

Tomi wanted an easy way to remotely switch the antenna to point at one of two geostationary satellites, Alphasat at 25E which has the Outernet signal and Inmarsat at 64E which has more services like AERO and STD-C. Another potential use of his tracker might be for tracking L-Band satellite while in a moving vehicle such as a car or boat. 

To automatically point the Outernet L-band patch antenna Tomi used a commonly found Pan-Tilt servo mounted inside an waterproof enclosure. On the servo is a 3D printed mount which the patch antenna is attached on. An Arduino Nano with Bluetooth module allows control of the servo.

The video below shows a test of the system, over on Reddit he has written a comment explaining the project and over on Imgur he’s uploaded some photos of the construction.

Outernet patch antenna project

Airspy Competition Winners Announced

Last week the Airpsy team gave us the opportunity to give away some prizes, so we started a comment competition. The prizes were an Airspy R2 + SpyVerter, Airspy Mini + SpyVerter and SpyVerter. The competition closed yesterday with over 500 entries, and the winners have now been selected via random.org. Congratulations to the winners below:

Larry (Airspy R2 + SV)
If I am going to win something from this one stuff, me build internet remote receiver on hill in central Europe (CZ) for all readers and fans of rtl-sdr.com website, generally for all RTL SDR enthusiasts….. :-)))
Pour Felicitér 2017
Larry (Ladislav)

kevin (Airspy Mini + SV)
been a ham a couple years now. their are so many uses for sdr’s ! it’s so cool. just looking down the list of others comments, i was like ‘oh ya’ forgot about that idea. awhile back we did a demo at our ham club with a el cheapo sdr and it sparked some interest , would like to play around with some of the newest toys, worlds of diff in capabilities. ultimate goal is to find the right one for the clubs emergency trailer. seeing the bands and whats going on, is priceless :)

Josh (SpyVerter)
I’d love to finally get into the HF band!

If you’re a winner please check your email address for the competition winner email.

The competition produced some very interesting comments that show the diversity in projects that can be performed with a SDR receiver and we strongly encourage you to read through the comments if you are looking for project ideas.

If you didn’t win, sorry! Better luck next time. But please continue to follow us on Facebook and Twitter as we will have more competitions and more prizes to give away later in 2017!

Comparing the RSP1 and RSP2 on VLF, LF and AM BC Reception

Over on YouTube user Mile Kokotov has uploaded two new videos that show both the SDRplay RSP1 and RSP2 receiving VLF, LF and AM BC signals. The SDRplay RSP1 is a 12-bit SDR that can receive from about 10 kHz – 2 GHz. Recently the RSP2 was released which is an upgrade over the RSP1 with additional filters and features. On this blog we did an initial review of the RSP2 and found mostly improved performance over the RSP1.

Mile writes about the signals he receives:

Antenna on RSP2 is connected to its Hi-Z port.

Here are some information about signals in this video:

60 kHz Time signal from NPL is a radio signal broadcast from the Anthorn Radio Station near Anthorn, UK.
The signal, also known as the MSF signal is broadcast at a highly accurate frequency of 60 kHz and can be received throughout the UK, and in much of northern and western Europe. (But I am receiving it in Macedonia) The signal’s carrier frequency is maintained at 60 kHz controlled by caesium atomic clocks at the radio station.

77.5 kHz Time signal is German DCF77 longwave time signal and standard-frequency radio station. The highly accurate 77.5 kHz carrier signal is generated from local atomic clocks that are linked with the German master clocks.

On 295 kHz there is NDB (Non directional Beacon) from Alexander The Great Airport near Skopje (about 80 km from my home)

On AM Broadcast Band (530 kHz – 1620 kHz) you can see how many AM stations are on the spectrum display (with 9 kHz raster) receiving here at my home with Mini-Whip antenna which is only 10 cm long!

More information you can find on my web-page: http://www.qsl.net/z33t

The first video shows reception with a Mini-Whip, and the second with a Delta Loop. We don’t see much difference in reception between the RSP1 and RSP2 in these videos but viewers with more sensitive ears may be able to tell us if they notice any differences.

SDRplay RSP1 and RSP2 receiving VLF LF and AM BC with Mini-Whip

SDRplay RSP1 and RSP2 receiving 60 kHz and 77.5 kHz Time signals in Macedonia