Tagged: kerberossdr

KerberosSDR: Tracking Aircraft on a Map via Passive Radar and Beamforming Only (Future Code Demonstration)

If you've been following KerberosSDR development (our US$149 4 channel coherent RTL-SDR), then you'll know that one interesting experiment that you can set up with it is a passive radar. Passive radar makes use of already exiting strong transmitters that broadcast signals such as FM, DAB and HDTV.

With one directional antenna pointing towards the transmitter, and one pointing in the general direction of moving objects like aircraft, it's possible to detect the transmitted signal being reflected off the aircraft's body.From the time delay and doppler shift detected in the reflected signal, a simple distance/speed plot showing the aircraft in motion can be created. This previous post shows an example of what information you could potentially collect in a range/speed graph over time. In the past we've also used passive radar to detect vehicles and measure how much traffic is in a neighbourhood.

However, with two antennas we can only get the detected object's range and distance information. If we use four antennas (one pointing towards the transmitter, and three pointing in the direction of objects), it is possible to use beam forming techniques combined to obtain an estimated map coordinate of the object. This is possible as we then we have distance information available from the passive radar algorithm, and bearing information available from the beam forming algorithm.

Tamas Peto who wrote our open source KerberosSDR code has been working on some new upcoming features for the KerberosSDR software, and beamformed direction finding of passive radar is one of them.  We note that to be clear this software is not yet released, and we still expect there to be several months before it is ready. At the moment all data was processed manually offline after collecting data with a KerberosSDR as part of this early test.

The image below shows an example of a recent measurement made from an aircraft. The red tracks show the actual ADS-B GPS coordinates of the aircraft, and the black line indicates the positional data measured from a DAB signal reflecting off the aircraft body. The orange line to the east indicates the main lobe of the three beam formed directional antennas, and the lines to the west indicate transmit towers.

The measured trajectory is only about 1-2 km off the actual one. Tamas notes that the position offset may be because at the moment altitude is not measured yet.

If you're interested in more information, Tamas created a PowerPoint presentation which can be downloaded from our Google Drive.

Passive Radar with Beamforming and Direction Finding
Passive Radar with Beamforming and Direction Finding

Other upcoming features that are planned for the KebrerosSDR code include being able to use direction finding on short bursty signals, improvements to networked direction finding and beamforming which may be useful for applications like radio astronomy and performance improvements.

KerberosSDR can be purchased from the Othernet store or Hacker Warehouse, and every purchase helps us fund development of more interesting features like passive radar beamforming!

A FM Radio Passive Radar System from Two RTL-SDR Dongles

Over on his blog, Max Manning has posted about his senior year design project which was an RTL-SDR based passive radar system that he created with his project partner Derek Capone. Max's writeup explains what passive radar is, and how the theory works in a very easy to understand way, utilizing graphs and short animations to help with the understanding. The rest of the post then goes into some deeper math, which is also fully explained.

Passive Radar works by using already existing powerful transmitters such as those for TV/FM. A receiver listens for these signals being reflected off of objects like aircraft and vehicles, and compares the reflection with a signal received directly from the transmitter. From this information a speed/range graph of detected objects can be calculated

For hardware, the team used two RTL-SDR dongles with the local oscillators connected together. A standard dipole is used as the reference antenna, and a 5-element Yagi is used as the surveillance antenna.

Max's post is a great read for those trying to understand how to do passive radar with a KerberosSDR which is our 4x coherent input RTL-SDR unit available from the Othernet store or Hacker warehouse. Being a radio capable of coherency, it is useful for applications like passive radar and direction finding. 

Their code is all open source and available on GitHub. We note that their code should also work with KerberosSDR with only either zero to minor modifications required. However, for the KerberosSDR we also have our own passive radar code available which might be a little easier to setup via the GUI.

Passive Radar with Two RTL-SDR dongles sharing a single clock.
Passive Radar with Two RTL-SDR dongles sharing a single clock.

KerberosSDR 4-Channel RTL-SDR Passive Radar with Peak Hold Display

Recently we've been testing a simple peak hold for the KerberosSDR passive radar display. This results in some nice graphs that show aircraft and vehicle activity over time. 

Passive radar works by using already existing transmitters such as those for HDTV and listening for reflections that bounce off of RF reflective objects. With a two antenna setup, it is possible to generate a bistatic range/doppler speed graph of reflected objects.

With the reference Yagi antenna pointed towards a 600 MHz DVB-T tower, and the surveillance antenna pointed to an airport we were able to obtain the graph below. The top two large traces show aircraft heading towards our station, whereas the bottom traces show aircraft leaving the airport. Also visible are multiple blips with smaller doppler speeds, and these correspond to vehicles.

KerberosSDR Passive Radar Display Peak Hold
KerberosSDR Passive Radar Display Peak Hold

The code on the KerberosSDR git will be updated in a few days time. We are also working on a more comprehensive passive radar tutorial that will try to explain concepts like processing gain, bistatic ranges and other important tips for getting good passive radar results. At the same time we're also working on improving direction finding ease of use by prototyping antenna switches for calibration, and working on getting 4-channel beamformed passive radar working which will allow us to plot passive radar returns on a real map.

The KerberosSDR is our 4-channel phase coherent capable RTL-SDR unit that we previously crowdfunded back in 2018.  With a 4-channel phase coherent RTL-SDR interesting applications like radio direction finding, passive radar and beam forming become possible. It can also be used as 4 separate RTL-SDRs for multichannel monitoring. KerberosSDR is currently available from the Othernet store and Hacker Warehouse for US$149.95.

New Product in Store: RTL-SDR Blog Magnetic Whip Antenna Set (Great for KerberosSDR Direction Finding)

We've recently released a new Magnetic Whip Antenna Set in our store. The set consists of a heavy duty magnetic mount antenna base with 2M RG59, a 9.5cm fixed whip antenna (usable from 400 MHz to 2 GHz+), and a 17cm to 1m telescopic whip (usable from 100 MHz - 400 MHz).

Click Here to Visit our Store

The antenna set costs US$14.95 each with free shipping. And if you buy four sets you will receive a 15% discount. Currently available to ship worldwide right now from our warehouse in China, and they will be on Amazon in 2-3 weeks.

One application of our KerberosSDR 4-Tuner Coherent RTL-SDR is radio direction finding. This requires four quality omni-directional antennas. We were disappointed to find that there were no high quality magnetic whip antennas available on the market for a low price that we could use with KerberosSDR so we made our own.

The magnetic base is designed carefully with conductive metal that is properly connected to the shield of the coax cable. Most cheap antenna bases just leave the shield connection floating and this causes insufficient coupling to the underlying ground plane resulting in poor performance and poor results when it comes to direction finding and reception.

We've tested this set with KerberosSDR and it is known to work well. The antenna can also of course be used for any other receiving purpose if you prefer to use a whip antenna over our multipurpose dipole antenna set.

In the first two images in the image slider below you can see a comparison between a black base that is not properly bonded to the coax shield, vs the RTL-SDR Blog silver base which is correctly bonded to the coax shield. Both tests used the 9.5cm whip antenna. You can see that the RTL-SDR Blog silver base provides a much lower noise floor and higher signal SNR due to the better ground plane. Also we note that when placing the antenna bases on a metallic surface to create a larger ground plane, the black base showed no further improvement, whereas the RTL-SDR Blog silver base did.

The final three images in the slider show the SWR plots of the two whips on the base. We can see that the 9.5cm whip provides an SWR of less than six below 412 MHz. The telescopic whip can be adjusted to provide better SWR for lower frequencies.

RTL-SDR Blog Antenna Base (Coax shield properly connected to base)
Generic Black Antenna Base (Coax shield not connected to base)
9.5cm Whip SWR Plot
Telescopic Whip Collapsed SWR Plot
Telescopic Whip Fully Expanded SWR Plot
RTL-SDR Blog Antenna Base (Coax shield properly connected to base) Generic Black Antenna Base (Coax shield not connected to base) 9.5cm Whip SWR Plot Telescopic Whip Collapsed SWR Plot Telescopic Whip Fully Expanded SWR Plot

KerberosSDR: Tracking Aircraft on a Map via Passive Radar and Beamforming Only (Future Code Demonstration)

If you've been following KerberosSDR development (our US$149 4 channel coherent RTL-SDR), then you'll know that one interesting experiment that you can set up with it is a passive radar. Passive radar makes use of already exiting strong transmitters that broadcast signals such as FM, DAB and HDTV.

With one directional antenna pointing towards the transmitter, and one pointing in the general direction of moving objects like aircraft, it's possible to detect the transmitted signal being reflected off the aircraft's body.From the time delay and doppler shift detected in the reflected signal, a simple distance/speed plot showing the aircraft in motion can be created. This previous post shows an example of what information you could potentially collect in a range/speed graph over time. In the past we've also used passive radar to detect vehicles and measure how much traffic is in a neighbourhood.

However, with two antennas we can only get the detected object's range and distance information. If we use four antennas (one pointing towards the transmitter, and three pointing in the direction of objects), it is possible to use beam forming techniques combined to obtain an estimated map coordinate of the object. This is possible as we then we have distance information available from the passive radar algorithm, and bearing information available from the beam forming algorithm.

Tamas Peto who wrote our open source KerberosSDR code has been working on some new upcoming features for the KerberosSDR software, and beamformed direction finding of passive radar is one of them.  We note that to be clear this software is not yet released, and we still expect there to be several months before it is ready. At the moment all data was processed manually offline after collecting data with a KerberosSDR as part of this early test.

The image below shows an example of a recent measurement made from an aircraft. The red tracks show the actual ADS-B GPS coordinates of the aircraft, and the black line indicates the positional data measured from a DAB signal reflecting off the aircraft body. The orange line to the east indicates the main lobe of the three beam formed directional antennas, and the lines to the west indicate transmit towers.

The measured trajectory is only about 1-2 km off the actual one. Tamas notes that the position offset may be because at the moment altitude is not measured yet.

If you're interested in more information, Tamas created a PowerPoint presentation which can be downloaded from our Google Drive.

Passive Radar with Beamforming and Direction Finding
Passive Radar with Beamforming and Direction Finding

Other upcoming features that are planned for the KebrerosSDR code include being able to use direction finding on short bursty signals, improvements to networked direction finding and beamforming which may be useful for applications like radio astronomy and performance improvements.

KerberosSDR can be purchased from the Othernet store or Hacker Warehouse, and every purchase helps us fund development of more interesting features like passive radar beamforming!

A FM Radio Passive Radar System from Two RTL-SDR Dongles

Over on his blog, Max Manning has posted about his senior year design project which was an RTL-SDR based passive radar system that he created with his project partner Derek Capone. Max's writeup explains what passive radar is, and how the theory works in a very easy to understand way, utilizing graphs and short animations to help with the understanding. The rest of the post then goes into some deeper math, which is also fully explained.

Passive Radar works by using already existing powerful transmitters such as those for TV/FM. A receiver listens for these signals being reflected off of objects like aircraft and vehicles, and compares the reflection with a signal received directly from the transmitter. From this information a speed/range graph of detected objects can be calculated

For hardware, the team used two RTL-SDR dongles with the local oscillators connected together. A standard dipole is used as the reference antenna, and a 5-element Yagi is used as the surveillance antenna.

Max's post is a great read for those trying to understand how to do passive radar with a KerberosSDR which is our 4x coherent input RTL-SDR unit available from the Othernet store or Hacker warehouse. Being a radio capable of coherency, it is useful for applications like passive radar and direction finding. 

Their code is all open source and available on GitHub. We note that their code should also work with KerberosSDR with only either zero to minor modifications required. However, for the KerberosSDR we also have our own passive radar code available which might be a little easier to setup via the GUI.

Passive Radar with Two RTL-SDR dongles sharing a single clock.
Passive Radar with Two RTL-SDR dongles sharing a single clock.

KerberosSDR 4-Channel RTL-SDR Passive Radar with Peak Hold Display

Recently we've been testing a simple peak hold for the KerberosSDR passive radar display. This results in some nice graphs that show aircraft and vehicle activity over time. 

Passive radar works by using already existing transmitters such as those for HDTV and listening for reflections that bounce off of RF reflective objects. With a two antenna setup, it is possible to generate a bistatic range/doppler speed graph of reflected objects.

With the reference Yagi antenna pointed towards a 600 MHz DVB-T tower, and the surveillance antenna pointed to an airport we were able to obtain the graph below. The top two large traces show aircraft heading towards our station, whereas the bottom traces show aircraft leaving the airport. Also visible are multiple blips with smaller doppler speeds, and these correspond to vehicles.

KerberosSDR Passive Radar Display Peak Hold
KerberosSDR Passive Radar Display Peak Hold

The code on the KerberosSDR git will be updated in a few days time. We are also working on a more comprehensive passive radar tutorial that will try to explain concepts like processing gain, bistatic ranges and other important tips for getting good passive radar results. At the same time we're also working on improving direction finding ease of use by prototyping antenna switches for calibration, and working on getting 4-channel beamformed passive radar working which will allow us to plot passive radar returns on a real map.

The KerberosSDR is our 4-channel phase coherent capable RTL-SDR unit that we previously crowdfunded back in 2018.  With a 4-channel phase coherent RTL-SDR interesting applications like radio direction finding, passive radar and beam forming become possible. It can also be used as 4 separate RTL-SDRs for multichannel monitoring. KerberosSDR is currently available from the Othernet store and Hacker Warehouse for US$149.95.

New Product in Store: RTL-SDR Blog Magnetic Whip Antenna Set (Great for KerberosSDR Direction Finding)

We've recently released a new Magnetic Whip Antenna Set in our store. The set consists of a heavy duty magnetic mount antenna base with 2M RG59, a 9.5cm fixed whip antenna (usable from 400 MHz to 2 GHz+), and a 17cm to 1m telescopic whip (usable from 100 MHz - 400 MHz).

Click Here to Visit our Store

The antenna set costs US$14.95 each with free shipping. And if you buy four sets you will receive a 15% discount. Currently available to ship worldwide right now from our warehouse in China, and they will be on Amazon in 2-3 weeks.

One application of our KerberosSDR 4-Tuner Coherent RTL-SDR is radio direction finding. This requires four quality omni-directional antennas. We were disappointed to find that there were no high quality magnetic whip antennas available on the market for a low price that we could use with KerberosSDR so we made our own.

The magnetic base is designed carefully with conductive metal that is properly connected to the shield of the coax cable. Most cheap antenna bases just leave the shield connection floating and this causes insufficient coupling to the underlying ground plane resulting in poor performance and poor results when it comes to direction finding and reception.

We've tested this set with KerberosSDR and it is known to work well. The antenna can also of course be used for any other receiving purpose if you prefer to use a whip antenna over our multipurpose dipole antenna set.

In the first two images in the image slider below you can see a comparison between a black base that is not properly bonded to the coax shield, vs the RTL-SDR Blog silver base which is correctly bonded to the coax shield. Both tests used the 9.5cm whip antenna. You can see that the RTL-SDR Blog silver base provides a much lower noise floor and higher signal SNR due to the better ground plane. Also we note that when placing the antenna bases on a metallic surface to create a larger ground plane, the black base showed no further improvement, whereas the RTL-SDR Blog silver base did.

The final three images in the slider show the SWR plots of the two whips on the base. We can see that the 9.5cm whip provides an SWR of less than six below 412 MHz. The telescopic whip can be adjusted to provide better SWR for lower frequencies.

RTL-SDR Blog Antenna Base (Coax shield properly connected to base)
Generic Black Antenna Base (Coax shield not connected to base)
9.5cm Whip SWR Plot
Telescopic Whip Collapsed SWR Plot
Telescopic Whip Fully Expanded SWR Plot
RTL-SDR Blog Antenna Base (Coax shield properly connected to base) Generic Black Antenna Base (Coax shield not connected to base) 9.5cm Whip SWR Plot Telescopic Whip Collapsed SWR Plot Telescopic Whip Fully Expanded SWR Plot

KerberosSDR Batch 2 Ships Soon! Pricing will Rise on Monday

KerberosSDR Batch 2 will begin shipping very soon! Thank you to all who have supported this project so far. If you didn't already know KerberosSDR is our experimental 4x Coherent RTL-SDR product made in partnership with Othernet. With it, coherent applications like radio direction finding (RDF), passive radar and beam forming are possible.

We just wanted to note that this Monday the reduced preorder pricing of US$130 + shipping will end, and the price will rise to the retail price of $149.95 + shipping. So if you have been thinking about ordering a unit, now would be a good time. Ordering is currently possible through Indiegogo. On Monday we will change to our own store. EDIT: Now available to purchase on the Othernet Store.

For shipping, US orders will be sent domestically from Othernet's office in Chicago. They are still waiting on the US shipment to arrive, but it is expected to arrive by the end of next week. Once shipped locally you will receive a shipment notification.

For international orders, the packages are being labelled now, and should be going out early next week, or sooner.

KerberosSDR Inside and Outside the Enclosure
KerberosSDR Inside and Outside the Enclosure

Future Updates to KerberosSDR

With the profits raised from KerberosSDR sales we are looking to continue funding development on the open source server software and visualization software being created (as well as applying updates ourselves). In future updates we will be looking at features such as:

  • Streamlining the sample and phase sync calibration process.
  • Experimenting with software notch filters for calibration (may reduce the need to disconnect the antennas during calibration).
  • Reworking the buffering code for improved sample ingestion performance and increased averaging.
  • Direction finding and passive radar algorithm improvements.
  • Creating a networked web application for combining data from two or more physically distributed KerberosSDRs over the internet for immediate TX localization.
  • Updates and bug fixes for the Android mobile direction finding app for use in vehicles.
  • Improving passive radar to be able to use all four RX ports for surveillance so that larger areas can be covered.
  • Plotting passive radar pings on a map.
  • Beginning experimentation with beam forming.
  • In the farther future we hope to eventually have even more clever software that can do things like locate multiple signals in the bandwidth at once, automatically plot them on a map, and track them via their unique RF fingerprint, or other identifiers.
  • Future hardware updates may see more streamlined calibration and smaller sizes.
KerberosSDR Android App for Direction Finding
KerberosSDR Android App for Direction Finding

SignalsEverywhere: Driving around with KerberosSDR and Locating a P25 Transmitter

On this weeks episode of SignalsEverywhere, host Corrosive tests out our KerberosSDR coherent RTL-SDR unit for radio direction finding. If you didn't already know KerberosSDR is our experimental 4x Coherent RTL-SDR product. With it, coherent applications like radio direction finding (RDF) and passive radar are possible. Together with the KerberosSDR direction finding Android app it is possible to visualize the direction finding data produced by a KerberosSDR running on a Pi3/Tinkerboard.

In the video Corrosive uses the KerberosSDR together with the recently updated companion Android app to determine the location of a P25 control channel. By driving around with the app constantly collecting data he's able to pinpoint the location within about 15 minutes.

If this interests you, we also have some more driving demo videos available here.

Direction Finding With Kerberos SDR

In addition to his video, Corrosive has also created a very useful calculator that can be used to calculate the required antenna spacing for a circular or linear direction finding array that can be used with the KerberosSDR.

KerberosSDR App Update: Heatmap + Precise TX Localizing & Turn by Turn Navigation Demo Videos

We have just released an updated version of the KerberosSDR Android direction finding app. If you didn't already know KerberosSDR is our experimental 4x Coherent RTL-SDR product. With it, coherent applications like radio direction finding (RDF) and passive radar are possible. Together with the KerberosSDR direction finding Android app it is possible to visualize the direction finding data produced by a KerberosSDR running on a Pi3/Tinkerboard.

The KerberosSDR hardware is currently in preorder status on Indiegogo for the second production batch, and we expect it to be ready to ship out this month. If you preorder then you'll be able to purchase a KerberosSDR at a reduced price of USD$130. After shipping for batch two begins the price will rise to USD$150.

The new version of the KerberosSDR Android app adds the following features:

  1. Heatmap Grid Plotting
  2. Precise TX location pinpointing when enough data points are gathered
  3. Turn by turn navigation to the RDF bearing direction / TX location
  4. Bearing moving average smoothing

To understand what these features are, we've released two demo videos showing them in action. In the first video we use the new features to find an 858 MHz TETRA transmitter, and in the second video we find a 415 MHz DMR transmitter. The first video explains the new features so we recommend watching that first.

KerberosSDR Radio Direction Finding: Heatmap + Auto Navigation to Transmitter Location Demo 1

KerberosSDR Radio Direction Finding: Heatmap + Auto Navigation to Transmitter Location Demo 2

Upcoming KerberosSDR Software Updates: Automatically Estimate TX Location and Navigate There

KerberosSDR is our 4x Coherent RTL-SDR that we've developed together with Othernet. It can be used for tasks such as direction finding and passive radar. KerberosSDR was successfully crowdfunded over on Indiegogo, and the first batch has already been shipped. Currently we are taking discounted pre-orders for a second production batch on Indiegogo. Please note that the discounted pricing will expire when we ship, which according to the manufacturing schedule should be next month, so please get in quick if you're interested!

If you'd like to back the KerberosSDR project and purchase a unit, please see our Indiegogo page.

Below are some recent updates to the project:

Android App Software Improvements

The Android App allows a KerberosSDR user to drive around in a car, collecting angle of arrival data for a signal. Driving around and collecting multiple data points solves the multipath issue. In a single location it is possible for a signal's direction of arrival to be skewed or incorrect as it can bounce off multiple surfaces and appear to be arriving from a wrong direction. If we collect data from many locations, we can average out the multipath.

We've recently been working on improvements to the direction finding capabilities of the KerberosSDR, and in particular to our free Android App which records and plots data from the KerberosSDR server. We are still testing and finalizing these new features, but hope to release the updated app before the end of this month.

Recently added features to the app include:

  • Added the ability to determine the estimated location of a transmitter, providing there has been sufficient data collected.
  • Added a heatmap grid of the collected data which can be used to determine where most angle lines cross. Can take into account RF power data too.
  • Added the ability for the software to automatically navigate you to the estimated TX location via MapBox GPS turn by turn navigation.

Bellow are screenshots showing some of the new features. In this experiment we located an 858 MHz TETRA transmit tower. Initially the app will navigate you to the edge of the grid, in the direction that most DoA lines are pointing to. When there is sufficient data to be able to confidently pinpoint the TX location, it will begin navigating you to the estimated location. In the screenshots the placemarker represents the known location of the transmitter, and the circles indicate the location estimated from direction finding.

Below is screenshots from a 415 MHz DMR tower that we located with KerberosSDR. The antenna array was purposely kept small, with a diameter of only 12cm. Even with the small antenna array we were able to pinpoint the transmitter down to about 100 - 200 meters.

The app should also now be able to handle intermittent signals, via a squelch filtering function, although this has not been fully tested yet.

In order to navigate you must have a 3G/4G data plan on your phone, and your phone must have the ability to create a WiFi hotspot. The KerberosSDR server running on a Pi 3 or similar will then automatically connect to a WiFi hotspot named "KerberosSDR" running on your phone and provide data to the app via WiFi.

Batch 2 Manufacturing Updates

Batch 2 production is in full swing, and at the moment we're expecting completion by mid August. This batch will ship directly from China, so we should be able to ship them off fairly quickly rather than needing to first wait for them to arrive in the USA.

Magnetic Whip Antennas

We have been disappointed that it has been difficult to find low cost but good quality magnetic whip antennas to use with KerberosSDR and vehicles. The quality of antennas used in direction finding equipment can matter, as any signals leaking into the coax, or radiation pattern skew can affect results. We are working on sourcing some high quality magnetic whip antennas that have good ground coupling. These will be sold at a reasonable price on our store.

Future Updates

We are still working on improving the server software further too and future updates will include things like the ability to notch out unwanted signals during phase calibration, a simplified DoA set up wizard, an improved buffering scheme so that additional data and processing gain can be applied, and more.

The Raspberry Pi 4 looks to be an excellent candidate to be used with the KerberosSDR. We will begin releasing ready to use images for the Pi 4 in the future.

Thanks!

Every sale of a KerberosSDR helps fund further developments to the software and possible future iterations of the hardware. So we'd like to thank all backers once again!