Tagged: l-band

Review: Outernet LNA and Patch Antenna

Recently we posted news that Outernet had released their 1.5 GHz LNA, Patch Antenna and E4000 Elonics RTL-SDR + E4000/LNA Bundle. When used together, the products can be used to receive the Outernet L-band satellite signal, as well as other decodable L-band satellite signals like AERO and Inmarsat STD-C EGC. Outernet is a new satellite service that aims to be a free “library in the sky”. They continuously broadcast services such as news, weather, videos and other files from satellites.

EDIT: For international buyers the Outernet store has now started selling these products at http://store.outernet.is.

A few days ago we received the LNA and patch antenna for review. The patch antenna is similar to the one we received a while ago when writing our STD-C EGC tutorial, although this one is now slightly larger. It is roughly 12 x 12 cm in size, 100g heavy and comes with about 13 cm of high quality RG316 coax cable with a right angled SMA male connector on the end. The coax cable is clamped on the back for effective strain relief.

The Outernet patch antenna and LNA
The Outernet patch antenna and LNA

The LNA is manufactured by NooElec for Outernet. It amplifies with 34 dB gain from 1525 – 1559 MHz, with its center frequency at 1542 MHz. It must be powered via a 3 – 5.5V bias tee and draws 25 mA. The package consists of a 5 x 2.5 cm PCB board with one female and one male SMA connector. The components are protected by a shielding can. Inside the shielding can we see a MAX12000 LNA chip along with a TA1405A SAW filter. The MAX12000 (datasheet here) is an LNA designed for GPS applications and has a NF of 1 dB. It has a design where there are two amplifiers embedded within the chip, and it allows you to connect a SAW filter in between them. The TA1405A SAW filter appears to be produced by Golledge (datasheet here), and it has about a 3 dB insertion loss.

The Outernet L-Band LNA
The Outernet L-Band LNA
Inside the Outernet LNA
Inside the Outernet LNA

We tested the patch and LNA together with one of our V3 RTL-SDR Blog dongles, with the bias tee turned on. The LNA was connected directly to the dongle, with no coax in between. The patch antenna was angled to point towards the Inmarsat satellite. A 5 meter USB extension cord was then used to interface with a PC. The images below demonstrate the performance we were able to get.

Outernet Signal
Outernet Signal with 4x Decimation
AERO
STD-C EGC
Outernet Signal Outernet Signal with 4x Decimation AERO STD-C EGC

The Outernet team writes that a SNR level of only 2 dB is needed for decoding to work on their signal. With the patch and LNA we were able to get at least 12 dB so this is more than good enough. Other signals such as AERO and STD-C EGC also came in very strongly. Even when not angled at the satellite and placed flat on a table it was able to receive the signal with about 5 dB’s of SNR.

In conclusion the patch and LNA worked very well at receiving the Outernet signal as well as AERO and STD-C EGC. We think these products are great value for money if you are interested in these L-Band signals, and they make it very easy to receive. The only minor problem with the patch antenna is that there is no stand for it, which makes it difficult to mount in a way that faces the satellite. However this issue can easily be fixed with some sellotape and your own mount.

In the future once the Outernet Rpi3 OS and decoder image is released we hope to show a demonstration and tutorial on receiving Outernet data.

Review: Outernet LNA and Patch Antenna

Recently we posted news that Outernet had released their 1.5 GHz LNA, Patch Antenna and E4000 Elonics RTL-SDR + E4000/LNA Bundle. When used together, the products can be used to receive the Outernet L-band satellite signal, as well as other decodable L-band satellite signals like AERO and Inmarsat STD-C EGC. Outernet is a new satellite service that aims to be a free “library in the sky”. They continuously broadcast services such as news, weather, videos and other files from satellites.

EDIT: For international buyers the Outernet store has now started selling these products at http://store.outernet.is.

A few days ago we received the LNA and patch antenna for review. The patch antenna is similar to the one we received a while ago when writing our STD-C EGC tutorial, although this one is now slightly larger. It is roughly 12 x 12 cm in size, 100g heavy and comes with about 13 cm of high quality RG316 coax cable with a right angled SMA male connector on the end. The coax cable is clamped on the back for effective strain relief.

The Outernet patch antenna and LNA
The Outernet patch antenna and LNA

The LNA is manufactured by NooElec for Outernet. It amplifies with 34 dB gain from 1525 – 1559 MHz, with its center frequency at 1542 MHz. It must be powered via a 3 – 5.5V bias tee and draws 25 mA. The package consists of a 5 x 2.5 cm PCB board with one female and one male SMA connector. The components are protected by a shielding can. Inside the shielding can we see a MAX12000 LNA chip along with a TA1405A SAW filter. The MAX12000 (datasheet here) is an LNA designed for GPS applications and has a NF of 1 dB. It has a design where there are two amplifiers embedded within the chip, and it allows you to connect a SAW filter in between them. The TA1405A SAW filter appears to be produced by Golledge (datasheet here), and it has about a 3 dB insertion loss.

The Outernet L-Band LNA
The Outernet L-Band LNA
Inside the Outernet LNA
Inside the Outernet LNA

We tested the patch and LNA together with one of our V3 RTL-SDR Blog dongles, with the bias tee turned on. The LNA was connected directly to the dongle, with no coax in between. The patch antenna was angled to point towards the Inmarsat satellite. A 5 meter USB extension cord was then used to interface with a PC. The images below demonstrate the performance we were able to get.

Outernet Signal
Outernet Signal with 4x Decimation
AERO
STD-C EGC
Outernet Signal Outernet Signal with 4x Decimation AERO STD-C EGC

The Outernet team writes that a SNR level of only 2 dB is needed for decoding to work on their signal. With the patch and LNA we were able to get at least 12 dB so this is more than good enough. Other signals such as AERO and STD-C EGC also came in very strongly. Even when not angled at the satellite and placed flat on a table it was able to receive the signal with about 5 dB’s of SNR.

In conclusion the patch and LNA worked very well at receiving the Outernet signal as well as AERO and STD-C EGC. We think these products are great value for money if you are interested in these L-Band signals, and they make it very easy to receive. The only minor problem with the patch antenna is that there is no stand for it, which makes it difficult to mount in a way that faces the satellite. However this issue can easily be fixed with some sellotape and your own mount.

In the future once the Outernet Rpi3 OS and decoder image is released we hope to show a demonstration and tutorial on receiving Outernet data.

New Outernet Products For Sale: E4000 RTL-SDR, L-Band Patch Antenna, L-Band LNA

Outernet is a new satellite service that aims to be a free “library in the sky”. They continuously broadcast services such as news, weather, videos and other files from satellites. Their aim is to provide up to date information to users in locations with little to no internet (rural, third world and sea), or in countries with censored internet. It may also be of interest to disaster preppers. Currently they have an active Ku (12 – 18 GHz, though due to be discontinued shortly) and C-band (4 – 8 GHz) satellite service, and now recently have their L-band (1.5 GHz) service active. The L-band signal is currently broadcasting at 1539.8725 MHz over the Americas, 1545.525 MHz over Europe/Africa/India and 1545.9525 MHz over Asia/Pacific.

To receive their L-Band service you will need an RTL-SDR capable of receiving 1.5 GHz, like a R820T/2 RTL-SDR (preferably at least passively cooled like our RTL-SDR Blog models as some R820T/2 units tend to fail at 1.5 GHz without cooling) or an E4000 dongle. You will also need an appropriate L-Band antenna and L-Band amplifier.

To help with these hardware requirements, Outernet have just released for sale an E4000 RTL-SDR with bias tee enabled ($39), an L-band satellite patch antenna ($24) and an L-Band LNA ($19). There is also a E4000 + LNA bundle ($49) available. The E4000 comes in a metal case, and has the bias tee always on. The LNA requires bias tee power and is also compatible with our RTL-SDR Blog units that have the bias tee. The patch antenna is tuned for 1525 – 1559 MHz and is the production version of the prototype antenna we used in our Inmarsat STD-C tutorial. Combined with an LNA we found that the patch antenna gives good performance and can also be used to receive other services such as Inmarsat STD-C and AERO. Currently shipping is only available within the USA, but they write that they will have international shipping available shortly.

EDIT: For international buyers the Outernet store is now started selling these products at http://store.outernet.is.

The L-Band Outernet signal decoders aren’t finalized yet, but we expect them to be released in a matter of days to weeks. They will have decoders available for the $9 CHIP computer and Raspberry Pi 3 platforms. They way it works is that you plug your RTL-SDR with L-band LNA and patch antenna connected into the CHIP or Raspberry Pi 3 which is running their customized image. The CHIP/Pi3 then broadcasts a WiFi access point which you can then connect to with any device, and access the files as they are downloaded. Once these decoders are released we’ll do a full tutorial on receiving the Outernet L-Band service with an RTL-SDR.

The Outernet L-Band Patch Antenna
The Outernet L-Band Patch Antenna
The Outnernet L-Band LNA
The Outernet L-Band LNA
The Outernet E4000 RTL-SDR in metal case with bias tee.
The Outernet E4000 RTL-SDR in metal case with bias tee.

Testing L-Band Inmarsat Reception with Three LNA4ALL’s + Two Filters

Over the last few weeks Adam 9A4QV has been testing L-Band Inmarsat reception with his LNA4ALL low noise amplifiers. In a previous post he tested reception with two LNA4ALL and found that he got an improved SNR ratio over using just one LNA4ALL. In his latest video he tests Inmarsat reception with three LNA4ALL’s and two L-band filters. His results show that the SNR is improved over using two LNA4ALL’s, and can almost match the results obtained by a commercial L-band front end which he also demonstrated in a previous video.

3x LNA4ALL on L-band + 2 Filters

Using the SUP-2400 Downconverter with an LNA and RTL-SDR to Receive 2.4 GHz Video

Earlier in June YouTube user T3CHNOTURK posted a video demonstrating him receiving signals above the maximum 1.7 GHz range of the RTL-SDR by using a modified SUP-2400 downconverter. Back in April it was discovered by KD0CQ that a $5 DirecTV SUP-2400 circuit could be modified and turned into a downconverter for use with the RTL-SDR.

Now T3CHNOTURK has uploaded a new video showing more demonstrations of the RTL-SDR + SUP-2400 combo in action. This time he adds a PGA-103 based LNA to boost the signal strength, which gives him better effective range. In the video he shows reception of a wireless keyboard once again, and then goes on to show him receiving 2.4 GHz analog PAL video using the RTL-SDR program TVSharp. The picture is not particularly clear, but it is a decent demonstration.

RTLSDR, TVsharp 2.4 Ghz video receiver moded SUP-2400 & pga-103 LNA

Reverse Engineering a Commercial Inmarsat Front-End to use with the RTL-SDR

Over on his YouTube channel Adam 9A4QV has uploaded a video showing a commercial Inmarsat front end which he reverse engineered to use with his RTL-SDR. The front end is a duplexor, which allows both receive and transmit to occur on the same channel, but to use with the RTL-SDR Adam only uses the receive part. Inside the front end is a large cavity filter, ceramic filter, and about 60 dB of total L-band gain from MMIC amplifiers.

In the second video Adam hooks up the Inmarsat front end to his RTL-SDR and home made patch antenna. The results show that the signals are very strong when using the commercial front end. In a previous post we showed Adam’s results with two LNA4ALL amplifiers. The commercial front end seems to give much stronger signals, but the results with one or two LNA4ALL are adequate enough for decoding.

Inmarsat frontend reverse engineering

Inmarsat frontend test

A Demonstration of the RTL-SDR Receiving WiFi and 2.4 GHz ISM with a Modded SUP-2400 Downconverter

Back in April we posted about how KD0CQ found that he could receive signals up to 4.5 GHz with an RTL-SDR by using a $5 downconverter for DirecTV called the SUP-2400. The RTL-SDR can only receive up to a maximum frequency of about 1.7 GHz, but the SUP-2400 downconverter can be modified to convert frequencies at around 2.4 GHz down into a range receivable by the RTL-SDR.

When we first posted the story the instructions for modifying the SUP-2400 to use as a downconverter weren’t uploaded yet, but they are now. The modification requires decent soldering skills as it involves desoldering a few small SMD components and bridging some points with wires.

Over on YouTube user T3CHNOTURK has uploaded a video showing the downconverter in action. With the SUP-2400 downconverter and RTL-SDR he is able to receive some WiFi at 2.447 GHz as well as signals from a wireless keyboard at 2.465 GHz

RTLSDR Receiveing wifi & 2.4 ghz ism band with moded SUP-2400 Downconverter

More L-Band Videos from 9A4QV: Testing 2x LNA4ALL + Filter + Patch, Receiving the Outernet Signal, L-band Filter

Adam 9A4QV has once again uploaded three new videos to YouTube, all related to L-band satellite reception. The first video shows how much L-band reception can be improved by using two LNA4ALL low noise amplifiers together with a filter placed in between them. Using two LNA’s instead of one improves the reception by about 2-6 dB. He also shows that L-band Inmarsat satellite signals at 1.5 GHz can even be received by his 1090 MHz folded monopole ADS-B antenna placed indoors.

The second video shows a reception report of the new Outernet signal. The Outernet signal is a new satellite data service being provided that broadcasts up to date news as well as various files and information such as educational videos and books for people in third world countries without internet. They have said that they are working on free decoding software for their service which should be released soon. The Outernet signal is a bit weaker than typical AERO signals, but can still be received quite easily with an RTL-SDR, patch antenna and 2 x LNA4ALL. The Outernet downconverter mentioned in a previous post should of course also work well.

His third video shows some tests on his L-band filter, showing return and insertion loss.

2x LNA4ALL and L band filter test

L band filter test

L-Band Reception with an LNA4ALL, Patch Antenna and RTL-SDR

Over on YouTube Adam 9A4QV has uploaded a video showing how good L-band reception can be with only a cheap home made patch antenna, RTL-SDR dongle and LNA4ALL. The video is in response to a question on our previous post, which discussed the prototype Outernet downconverter. The question asked what difference can we expect with the downconverter compared to just using an LNA, like the LNA4ALL.

In the video Adam shows that L-Band reception with the LNA4ALL can be as good as with the downconverter. The main problem with L-band reception on the RTL-SDR is that some units tend to fail to receive properly at around 1.5 GHz. The downconverter bypasses this problem by receiving L-band at around 200 MHz instead. Though we believe that this problem is solved on the units we sell as we heatsink to a metal enclosure, and if that is not enough, it can be solved further by using this modified driver. The other advantages of the downconverter is that it includes filtering, an LNA, and allows you to use much longer runs of lossy cable, which is useful if for instance you want to put a permanent L-band antenna on the roof.

LNA4ALL & RTL SDR @ L band