Tagged: magnetic loop

SWLing Blog: Building a Homemade YouLoop (Noise-Cancelling Passive Loop) Antenna

Over on the SWLing Post Blog Thomas has uploaded an excellent tutorial showing how you can build your own YouLoop (aka a Noise-Cancelling Passive Loop). If you've been following our previous posts you'll know that we recently started selling the "YouLoop" which is designed and produced by Youssef from Airspy. The YouLoop is a passive loop antenna designed for HF reception, but also works well up until VHF. The main catch is that you need to use it with a receiver with a low noise figure front end, like the Airspy HF+ Discovery (SDRplay units should work well too). The RTL-SDR Blog V3 in direct sampling mode does somewhat work with it to an extent, but RTL-SDRs relying on upconverters for HF will probably see poor results.

We are selling the loop in our store for $34.95 including free shipping to most countries. Batch 2 is currently in preorder, but is almost sold out and should begin shipping soon. Batch 3 will also be available for preorder soon and is about 2 weeks away from shipping. We also expect there to be a high quality pre-amp available for sale in a few months too which will help those with higher noise figure radios or longer feed line runs. 

Alternatively, as the YouLoop is a relatively simple and openly shared design it is possible to homebrew your own if you want to. Over on the popular SWLing Post blog, author Thomas has written up a full tutorial on hombrewing your own. The parts you need include coax cable, a BN-73-302 wideband 2-hole ferrite core, magnet wire, heat shrink tubing and electrical tape. The guide takes you through the process of winding the balun and constructing the loop using simple tools and a soldering iron.

Comparing Four Wideband Magnetic Loop Antennas on HF with an SDRplay RSPduo

Over on YouTube the Scanner and Sdr Radio channel has uploaded a video comparing four different brands of HF wideband loop antennas using an SDRplay RSPduo. The loops he tested include the cheap Chinese MLA-30 (~$40), the Cross Country Wireless (CCW) loop ($70), Bonito ML200 (~$442) and the Wellbrook 1530LN (~$305).

The MLA-30 was slightly modified with the cheap coax removed and a BNC connector added. Each of the antennas used a wire loop with diameter of approximately 1.6m, except for the Wellbrook which has a fixed size solid loop of 1m.

The tests compare each loop against the Wellbrook which is used as the reference antenna. In each test he checks each HF band with real signals on the RSPduo and compares SNR between the two antennas.

The results show that the two expensive antennas, the Bonito and Wellbrook, do generally perform the best with the lowest noise floors, but surprisingly the MLA-30 actually performs very well for it's price point, even outperforming the Wellbrook reference on SNR in some bands. We note that some of the improvement may be due to the larger 1.6m loop size used on the MLA-30, compared to the 1m loop on the Wellbrook.

Also we note that it can be hard to compare antennas in single tests, because the differences in antenna radiation patterns could be favorable for some signals, and less so for others, depending on the location.

Comparing 4 magnetic loops for hf

An Active Low Cost HF Loop Antenna Made in the UK

Cross Country Wireless is a UK based company that has created an active HF loop antenna for only $70 USD including international shipping. The loop appears to have already been for sale for a while now, but recently they've created a new version that can be easily powered by a 5V bias tee with at least a 67 mA current capacity. This makes it very easy to use with radios that have built in bias tee's such as our RTL-SDR Blog V3 and SDRplay and Airspy units. The page reads:

The Loop Antenna Amplifier contains all the electronics needed for home DIY construction of an active loop (magnetic loop) low noise receiving antenna.

The amplifier consists of two units, a weatherproofed outdoor unit for connection to a suitable loop and a base unit to further amplify the signal and to provide DC power up the coaxial cable to the outdoor unit.

The outdoor unit is housed in a polycarbonate box with stainless steel antenna connections and a BNC socket. The indoor unit is a PCB with two BNC connectors and a USB socket to take 5V from a USB socket on a PC or phone charger.

Like our other active antenna products it has RF overload protection to allow it to be used very close to transmit antennas without damaging the amplifier or the attached receiver.

The loop depends on what the user has available. We have tested it with simple wire loops or deltas, coax loops and an alloy loop made from a bicycle wheel rim. We supply a 3m (10 ft) length of wire as a simple loop to make a first loop for testing.

The photograph on the right shows the prototype with a 1m diameter loop of LDF4-50 coax cable as a test loop.

With a simple wire loop or delta and a small USB powerbank it makes a very compact and portable receiving antenna for holiday listening or covert use.

The latest version can now have the head unit powered directly from receivers with a 5V bias-tee such as the SDRplay receivers or some RTL-SDR dongle receivers with a bias-tee option.

Specifications:

  • Frequency range: 10 kHz to 30 MHz
  • Loop amplifier input impedance: 0.3 ohms
  • Output impedance: 50 ohms
  • Supply voltage: 5 V from USB socket or charger
  • Supply current (head and base unit): 112 mA
  • Supply current (head unit fed with 5V bias-tee): 67 mA
  • Loop antenna outdoor unit connectors: Two M6 stainless steel threaded studs and BNC female (RF out 50 ohms)

There is no comparison yet that we've seen on how this loop compares against the cheaper US$45 Chinese made MLA-30 loop. In a previous post Martin (G8JNJ) reviewed the MLA-30 and noted several design flaws after reverse engineering the circuit. He has let us know that he will also be reviewing the Cross Country Wireless Active Loop and will let us know his thoughts in the future.

Cross Country Wireless Loop
Cross Country Wireless Loop
Cross Country Wireless Loop Antenna Amplifier VLF test with 1m diameter coax loop

SDRplay RSPDuo Diversity: Combing a Magnetic Loop and Miniwhip Antenna

The SDRplay team have posted some more videos that demonstrate the SDRplay Duo's diversity function. The SDRplay RSPDuo is a 14-bit dual tuner software defined radio capable of tuning between 1 kHz - 2 GHz. It's defining feature is that it has two receivers in one radio, which allows us to combine the signal from two antenna together.

In the video Jon uses a Wellbrook Magnetic Loop antenna and a Bonito Miniwhip antenna both connected to the RSP Duo. Individually each antenna receives the signal relatively poorly and fades in and out as conditions and signal reflections fluctuate. However, with diversity enabled the SNR is improved and fading is significantly reduced.

The method they use to combine signals is a relatively simple method called maximum-ratio combining (MRC). The idea is that the two signal channels are added together, with the currently stronger and less noisy channel having increased gain. So while the signal levels fluctuate, as long as one antenna can receive the signal you will see no fading.

SDRplay HF Diversity Demo

SDRplay note that the key to a good setup is to have the antennas spaced out at a quarter wavelength of the signal frequency that you are receiving. In a second video they show how to properly set up an antenna system for proper HF diversity receiving.

This video demonstrates how SDRuno diversity and the RSPduo can bring enhanced reception at HF using 2 antennas separated by approximately a quarter wavelength. It uses the the current version of SDRuno (V 1.32) and the dual tuner RSPduo SDR from SDRplay.

In this experiment we had a wire dipole with one leg approximately a quarter wavelength from a Boniwhip vertical - both were picking up similar strength signals before going into "diversity" (max ratio combination) mode.

The benefits of diversity tuning at HF are very dependent on many variables, most notably the changing nature of the reflected signal path and the degree to which noise and unwanted signals are not as coherent as the wanted signal.

Antenna and SDRplay set-up for HF diversity reception (rev1)

Testing an SDRplay RSPduo with Bonito Active Loop Antennas

Bonito is a company that sells various active dipole and loop antennas for ham radio and DX applications. Recently they decided to test their MegaLoop FX and MegaDipol MD3000DX antennas on an SDRplay RSPduo, and compare it against a higher end WinRadio. Bonito found that the RSPduo performed well on the weaker longwave stations, but the Winradio outperformed it on the stronger ones. The differences were due to the better dynamic range of the Winradio.

The article goes on to make some recommendations for using their antennas on the RSPduo. They write that if intermodulation due to very strong signals occurs, there are some fixes that can be applied on their antennas to desensitize them and prevent overload. With the loop, a smaller loop size should be used, and the gain selector should be set to medium or min. With the dipole, they note that shortening the elements, and using it in an L-configuration with the lower radiator pointing towards the interfering signals can be used to attenuate them out. This works because a dipole configured in a L shape provides a bit of directionality.

The article also notes how grounding, very good coax shielding, good quality USB cables and galvanic isolation are all very important for reducing noise.

Bonito RSPduo Antenna Test Setup
Bonito RSPduo Antenna Test Setup

Identifying Noise Sources in the Shack using an SDR and an Active Receive Loop

Over on YouTube user SignalSearch has uploaded a video showing how he uses an active magnetic loop antenna indoors to identify local noise sources. Magnetic loop antennas are directional, meaning that they receive best when pointing towards a signal. This means that they also receive noise better when pointed at a noise source.  In the video SignalSearch uses a W6LVP receive loop antenna and demonstrates noise being emitted from his lightbulb, and from a plug in Ethernet over powerline adapter, which are known to be huge sources of HF noise.

If you are interested in the noise produced by these Ethernet over powerline adapters then we did a previous post on this problem over here.

The K9AY Loop Antenna: A Directional E-H Antenna for HF

Thank you to Frank Sessink (PA0FSB) for submitting to us his document describing the K9AY loop antenna (pdf), which is the antenna that he successfully uses with his RTL-SDR for HF reception. The antenna combines magnetic (H) and electric (E) field reception in order to create a directive radiation pattern. Frank extends the idea by showing a method that can adjust the directivity electrically with some simple resistor switching.

The antenna that I use is for medium wave DX, specially to receive MW from USA here in Europe/The Netherlands. The antenna is a combination of a magnetic loop and a sense antenna for the E-field. The magnetic loop is directive, but has no front-rear ratio. The E-field antenna has omnidirectional sensitivity. The combination, in correct phase and amplitude, results in a front-rear ratio of more than 25 dB over the frequency range from 500 kHz to around 3 MHz. Higher frequency makes no sense, since skywave signals distort the ground wave directivity pattern.

A simple modification is used as directional antenna with remote control: two orthogonal loops that combine E and H-field in a simple way. I can make 8 selectable directions.

The full document is available here in PDF format.

The K9AY E-H HF Antenna
The K9AY E-H HF Antenna

A Homemade Magnetic Loop Antenna used with RTL-SDR Direct Sampling

Over on our forums user "SandB"  has submitted his designs for a homemade magnetic loop antenna with preamp that he uses together with his RTL-SDR in direct sampling mode. The antenna looks like an interesting build so we are resharing it here. He writes:

So, antenna itself represents as handmade on-PCB winding made of two-side-foiled fiberglass size of 30x40 cm. Both 'windings' connected in the middle and thus winded to 'continue' each other.

Preamp located in metal box attached to antenna and connected via 1.5m S/FTP cable to another box with RTL stick. Note that some transistors soldered on PCB in upside-down - dot on layout means base.

Electrically preamp made as 3-stages balanced signal amplifier with low-input impedance and low-pass filter before input with cut-off at 15MHz. Such complications were required to reduce interferences and intermodulations. Antenna itself is more effective on long-medium waves, so preamp has higher gain on short waves (gain varies from 45db at 200KHz to 68 db at 10MHz - see attached freq responce pic). Getting more flat responce at lower frequencies is possible by increasing C10/C11/C12 to 22nF.

My implementation has some additional elements to make possible to adjust preamp's gain in few db's. But seems its quite useless so that details not included in this post. Anyway, its possible to reduce gain by increasing R6 to 500K.

Box with RTL SDR: I put both signal wires as 3 windings via ferrite ring with high permeability just before RTL chip. This noticeable reduced stray interference, that induced in that cable but doesn't affect differential signal.

SWLing Blog: Building a Homemade YouLoop (Noise-Cancelling Passive Loop) Antenna

Over on the SWLing Post Blog Thomas has uploaded an excellent tutorial showing how you can build your own YouLoop (aka a Noise-Cancelling Passive Loop). If you've been following our previous posts you'll know that we recently started selling the "YouLoop" which is designed and produced by Youssef from Airspy. The YouLoop is a passive loop antenna designed for HF reception, but also works well up until VHF. The main catch is that you need to use it with a receiver with a low noise figure front end, like the Airspy HF+ Discovery (SDRplay units should work well too). The RTL-SDR Blog V3 in direct sampling mode does somewhat work with it to an extent, but RTL-SDRs relying on upconverters for HF will probably see poor results.

We are selling the loop in our store for $34.95 including free shipping to most countries. Batch 2 is currently in preorder, but is almost sold out and should begin shipping soon. Batch 3 will also be available for preorder soon and is about 2 weeks away from shipping. We also expect there to be a high quality pre-amp available for sale in a few months too which will help those with higher noise figure radios or longer feed line runs. 

Alternatively, as the YouLoop is a relatively simple and openly shared design it is possible to homebrew your own if you want to. Over on the popular SWLing Post blog, author Thomas has written up a full tutorial on hombrewing your own. The parts you need include coax cable, a BN-73-302 wideband 2-hole ferrite core, magnet wire, heat shrink tubing and electrical tape. The guide takes you through the process of winding the balun and constructing the loop using simple tools and a soldering iron.

Comparing Four Wideband Magnetic Loop Antennas on HF with an SDRplay RSPduo

Over on YouTube the Scanner and Sdr Radio channel has uploaded a video comparing four different brands of HF wideband loop antennas using an SDRplay RSPduo. The loops he tested include the cheap Chinese MLA-30 (~$40), the Cross Country Wireless (CCW) loop ($70), Bonito ML200 (~$442) and the Wellbrook 1530LN (~$305).

The MLA-30 was slightly modified with the cheap coax removed and a BNC connector added. Each of the antennas used a wire loop with diameter of approximately 1.6m, except for the Wellbrook which has a fixed size solid loop of 1m.

The tests compare each loop against the Wellbrook which is used as the reference antenna. In each test he checks each HF band with real signals on the RSPduo and compares SNR between the two antennas.

The results show that the two expensive antennas, the Bonito and Wellbrook, do generally perform the best with the lowest noise floors, but surprisingly the MLA-30 actually performs very well for it's price point, even outperforming the Wellbrook reference on SNR in some bands. We note that some of the improvement may be due to the larger 1.6m loop size used on the MLA-30, compared to the 1m loop on the Wellbrook.

Also we note that it can be hard to compare antennas in single tests, because the differences in antenna radiation patterns could be favorable for some signals, and less so for others, depending on the location.

Comparing 4 magnetic loops for hf

An Active Low Cost HF Loop Antenna Made in the UK

Cross Country Wireless is a UK based company that has created an active HF loop antenna for only $70 USD including international shipping. The loop appears to have already been for sale for a while now, but recently they've created a new version that can be easily powered by a 5V bias tee with at least a 67 mA current capacity. This makes it very easy to use with radios that have built in bias tee's such as our RTL-SDR Blog V3 and SDRplay and Airspy units. The page reads:

The Loop Antenna Amplifier contains all the electronics needed for home DIY construction of an active loop (magnetic loop) low noise receiving antenna.

The amplifier consists of two units, a weatherproofed outdoor unit for connection to a suitable loop and a base unit to further amplify the signal and to provide DC power up the coaxial cable to the outdoor unit.

The outdoor unit is housed in a polycarbonate box with stainless steel antenna connections and a BNC socket. The indoor unit is a PCB with two BNC connectors and a USB socket to take 5V from a USB socket on a PC or phone charger.

Like our other active antenna products it has RF overload protection to allow it to be used very close to transmit antennas without damaging the amplifier or the attached receiver.

The loop depends on what the user has available. We have tested it with simple wire loops or deltas, coax loops and an alloy loop made from a bicycle wheel rim. We supply a 3m (10 ft) length of wire as a simple loop to make a first loop for testing.

The photograph on the right shows the prototype with a 1m diameter loop of LDF4-50 coax cable as a test loop.

With a simple wire loop or delta and a small USB powerbank it makes a very compact and portable receiving antenna for holiday listening or covert use.

The latest version can now have the head unit powered directly from receivers with a 5V bias-tee such as the SDRplay receivers or some RTL-SDR dongle receivers with a bias-tee option.

Specifications:

  • Frequency range: 10 kHz to 30 MHz
  • Loop amplifier input impedance: 0.3 ohms
  • Output impedance: 50 ohms
  • Supply voltage: 5 V from USB socket or charger
  • Supply current (head and base unit): 112 mA
  • Supply current (head unit fed with 5V bias-tee): 67 mA
  • Loop antenna outdoor unit connectors: Two M6 stainless steel threaded studs and BNC female (RF out 50 ohms)

There is no comparison yet that we've seen on how this loop compares against the cheaper US$45 Chinese made MLA-30 loop. In a previous post Martin (G8JNJ) reviewed the MLA-30 and noted several design flaws after reverse engineering the circuit. He has let us know that he will also be reviewing the Cross Country Wireless Active Loop and will let us know his thoughts in the future.

Cross Country Wireless Loop
Cross Country Wireless Loop
Cross Country Wireless Loop Antenna Amplifier VLF test with 1m diameter coax loop

SDRplay RSPDuo Diversity: Combing a Magnetic Loop and Miniwhip Antenna

The SDRplay team have posted some more videos that demonstrate the SDRplay Duo's diversity function. The SDRplay RSPDuo is a 14-bit dual tuner software defined radio capable of tuning between 1 kHz - 2 GHz. It's defining feature is that it has two receivers in one radio, which allows us to combine the signal from two antenna together.

In the video Jon uses a Wellbrook Magnetic Loop antenna and a Bonito Miniwhip antenna both connected to the RSP Duo. Individually each antenna receives the signal relatively poorly and fades in and out as conditions and signal reflections fluctuate. However, with diversity enabled the SNR is improved and fading is significantly reduced.

The method they use to combine signals is a relatively simple method called maximum-ratio combining (MRC). The idea is that the two signal channels are added together, with the currently stronger and less noisy channel having increased gain. So while the signal levels fluctuate, as long as one antenna can receive the signal you will see no fading.

SDRplay HF Diversity Demo

SDRplay note that the key to a good setup is to have the antennas spaced out at a quarter wavelength of the signal frequency that you are receiving. In a second video they show how to properly set up an antenna system for proper HF diversity receiving.

This video demonstrates how SDRuno diversity and the RSPduo can bring enhanced reception at HF using 2 antennas separated by approximately a quarter wavelength. It uses the the current version of SDRuno (V 1.32) and the dual tuner RSPduo SDR from SDRplay.

In this experiment we had a wire dipole with one leg approximately a quarter wavelength from a Boniwhip vertical - both were picking up similar strength signals before going into "diversity" (max ratio combination) mode.

The benefits of diversity tuning at HF are very dependent on many variables, most notably the changing nature of the reflected signal path and the degree to which noise and unwanted signals are not as coherent as the wanted signal.

Antenna and SDRplay set-up for HF diversity reception (rev1)

Testing an SDRplay RSPduo with Bonito Active Loop Antennas

Bonito is a company that sells various active dipole and loop antennas for ham radio and DX applications. Recently they decided to test their MegaLoop FX and MegaDipol MD3000DX antennas on an SDRplay RSPduo, and compare it against a higher end WinRadio. Bonito found that the RSPduo performed well on the weaker longwave stations, but the Winradio outperformed it on the stronger ones. The differences were due to the better dynamic range of the Winradio.

The article goes on to make some recommendations for using their antennas on the RSPduo. They write that if intermodulation due to very strong signals occurs, there are some fixes that can be applied on their antennas to desensitize them and prevent overload. With the loop, a smaller loop size should be used, and the gain selector should be set to medium or min. With the dipole, they note that shortening the elements, and using it in an L-configuration with the lower radiator pointing towards the interfering signals can be used to attenuate them out. This works because a dipole configured in a L shape provides a bit of directionality.

The article also notes how grounding, very good coax shielding, good quality USB cables and galvanic isolation are all very important for reducing noise.

Bonito RSPduo Antenna Test Setup
Bonito RSPduo Antenna Test Setup

Identifying Noise Sources in the Shack using an SDR and an Active Receive Loop

Over on YouTube user SignalSearch has uploaded a video showing how he uses an active magnetic loop antenna indoors to identify local noise sources. Magnetic loop antennas are directional, meaning that they receive best when pointing towards a signal. This means that they also receive noise better when pointed at a noise source.  In the video SignalSearch uses a W6LVP receive loop antenna and demonstrates noise being emitted from his lightbulb, and from a plug in Ethernet over powerline adapter, which are known to be huge sources of HF noise.

If you are interested in the noise produced by these Ethernet over powerline adapters then we did a previous post on this problem over here.

The K9AY Loop Antenna: A Directional E-H Antenna for HF

Thank you to Frank Sessink (PA0FSB) for submitting to us his document describing the K9AY loop antenna (pdf), which is the antenna that he successfully uses with his RTL-SDR for HF reception. The antenna combines magnetic (H) and electric (E) field reception in order to create a directive radiation pattern. Frank extends the idea by showing a method that can adjust the directivity electrically with some simple resistor switching.

The antenna that I use is for medium wave DX, specially to receive MW from USA here in Europe/The Netherlands. The antenna is a combination of a magnetic loop and a sense antenna for the E-field. The magnetic loop is directive, but has no front-rear ratio. The E-field antenna has omnidirectional sensitivity. The combination, in correct phase and amplitude, results in a front-rear ratio of more than 25 dB over the frequency range from 500 kHz to around 3 MHz. Higher frequency makes no sense, since skywave signals distort the ground wave directivity pattern.

A simple modification is used as directional antenna with remote control: two orthogonal loops that combine E and H-field in a simple way. I can make 8 selectable directions.

The full document is available here in PDF format.

The K9AY E-H HF Antenna
The K9AY E-H HF Antenna

A Homemade Magnetic Loop Antenna used with RTL-SDR Direct Sampling

Over on our forums user "SandB"  has submitted his designs for a homemade magnetic loop antenna with preamp that he uses together with his RTL-SDR in direct sampling mode. The antenna looks like an interesting build so we are resharing it here. He writes:

So, antenna itself represents as handmade on-PCB winding made of two-side-foiled fiberglass size of 30x40 cm. Both 'windings' connected in the middle and thus winded to 'continue' each other.

Preamp located in metal box attached to antenna and connected via 1.5m S/FTP cable to another box with RTL stick. Note that some transistors soldered on PCB in upside-down - dot on layout means base.

Electrically preamp made as 3-stages balanced signal amplifier with low-input impedance and low-pass filter before input with cut-off at 15MHz. Such complications were required to reduce interferences and intermodulations. Antenna itself is more effective on long-medium waves, so preamp has higher gain on short waves (gain varies from 45db at 200KHz to 68 db at 10MHz - see attached freq responce pic). Getting more flat responce at lower frequencies is possible by increasing C10/C11/C12 to 22nF.

My implementation has some additional elements to make possible to adjust preamp's gain in few db's. But seems its quite useless so that details not included in this post. Anyway, its possible to reduce gain by increasing R6 to 500K.

Box with RTL SDR: I put both signal wires as 3 windings via ferrite ring with high permeability just before RTL chip. This noticeable reduced stray interference, that induced in that cable but doesn't affect differential signal.