Category: HF

Testing Version Two of the NooElec Balun One Nine

Over on YouTube two reviewers have just uploaded videos showing off version two of the NooElec Balun One Nine. Version one of the Balun One Nine is a balun transformer that can be used with long wire and untuned dipole HF antennas to match the impedance with a 50 Ohm SDR. Matching the impedance results in better HF reception and less noise. While it is a balun and hence designed for balanced antennas like a dipole, it is possible to convert it into an unun for long wire antennas by cutting a trace.

In the first video Corrosive from SignalsEverywhere compares version one with version two. He notes that the new Balun uses a higher quality Coilcraft component, a more sturdy terminal connector and includes mounting holes. He notes that the power rating of the balun should also allow for low power transmission. However, when comparing the two in reception there is little difference in actual results between version one and two. 

In the second video TechMinds provides a similar video and also shows the enclosure that they will be providing in a premium version.

Nooelec 9:1 HF Balun Version 2?

New Balun One Nine Version 2 From NooElec

Hermes Lite 2 HF Amateur Radio SDR Group Buy Now Active

The Hermes Lite 2 (HL2) amateur radio direct sampling HF SDR transceiver board is now active for a group buy over on Makerfabs. The price is $225.70, and there need to be 25 orders before the group buy is confirmed. If confirmed, production will begin on 23 September, with production estimated to take about one month. More information about the group buy available on the Hermes Lite 2 Wiki. The N2ADR filter board for transmitting with the HL2 is also available on Makerfabs for $52.70.

The HPSDR Hermes SDR is an open source amateur radio SDR transceiver project that was released as far back as 2011. More recently Steve Haynal has been working on a Hermes-Lite project which is intended to be an opensource open hardware low cost amateur radio HF transceiver that is based on the HPSDR Hermes SDR project software and FPGA DSP implementation.

The Hermes-Lite is able to be very low cost because at it's core is the AD9866 chip which is a mass produced RF front end (LNA + ADC & DAC) that is commonly used in cable modems. Because it is a mass produced commodity, the chip only costs approx. US$35-$25 on Mouser depending on quantity. The chip has a 12-bit 80 MHz ADC and DAC, meaning that if used without any analog mixer front end (like in the Hermes-Lite) it can receive the entire spectrum between 0.1 to 38 MHz all at once.

The Hermes-Lite is also a lot more than just the RF chip, as it contains a set of switched RF filters and a 5W power amplifier for TX. It also interfaces with a PC via Ethernet and has a built in FPGA for DSP processing.

The Hermes Lite 2 PCB
The Hermes Lite 2 PCB

Cleanly Embedding an RTL-SDR in an FT-991A With No Extra Cables

GPIO Pins Used on the RTL-SDR Blog V3
GPIO Pins Used on the RTL-SDR Blog V3

Thank you to Rodrigo Freire (PY2RAF) for submitting his project that has cleanly turned a standard Yaesu FT-991A ham radio into an RTL-SDR based software defined radio panadapter with no external wires, hubs or dongles.

Rodrigo's system consists of an IF tap amplifier+filter board that is connected to an internally mounted RTL-SDR. The RTL-SDR is internally connected to the FT-991A's USB hub which had to be upgraded from a 2-port hub to a 4-port hub as the 2-ports were already in use by the CAT and Audio features. This required the stock USB hub IC to be replaced with a hot air rework station.

Everything is mounted inside the radio chassis itself, and the end result is a neat solution with no external wires, hubs or dongles that has essentially turned the FT-991A into an SDR. Plugging in the single stock USB cable from the FT-991A results in the standard CAT and Audio interfaces showing up, as well as the RTL-SDR.

What's also interesting is that Rodrigo makes use of the GPIO pins on our RTL-SDR Blog V3 to enable the RX_EN, BPF and BYPASS switches on the IF tap board. This allows for a cleaner solution as no external switches need to be installed.

The entire project is open source with schematics and the BOM provided over on the GitHub, and excellent documentation is available on the project's Wiki.

FT991A Converted into an SDR.
FT991A Converted into an SDR.

Turning FT-991A to a REAL SDR: Embedding a SDR Panadapter INSIDE the radio, no extra wires!

Airspy HF+ Discovery: Collection of Tests and Reviews

The Airspy HF+ Discovery is a new US$169 software defined radio that recently began shipping. On HF it can tune from 0.5 kHz to 31 MHz, and on VHF from 60 to 260 MHz.

It is advertised as having extremely high dynamic range and sensitivity, comparable to high end (and much more expensive) SDRs. High dynamic range means that extremely strong powerhouse stations will not block weaker stations from being received. On lower end SDRs strong stations can cause an SDR to overload, resulting in poor reception.

The HF+ Discovery is an improvement over the original HF+ (now known as the HF+ Dual Port). Back in 2017 we reviewed the original HF+ and found it's performance to be excellent. However, a number of people found that by using low loss preselectors the performance could improve the performance even further.

Originally Youssef (the developer of Airspy products) began designing a low cost preselector add on for the HF+ Dual Port, in order to increase the already great dynamic range. However, it was deemed too difficult for users to retrofit their devices. The result was the creation of the HF+ Discovery, which combines these preselectors with the already excellent HF+ SDR circuitry. Compared to the HF+ Dual, the Discovery is much smaller, and comes in a plastic case rather than a metal one. Instead of the split HF/VHF dual ports seen on the HF+ Dual, the Discovery only has one port that covers both bands. Overall performance with the preselectors is increased, and the price is even lower than the HF+ Dual Port.

Over the past few weeks a number of reviews and comparison videos have come out. Below we list a few that we found interesting.

In this video, the Techminds YouTube channel gives an overview on what the HF+ discovery is, and then gives a quick demo. If you haven't heard of the HF+ Discovery before then this is a good introduction.

Airspy HF+ Discovery - Overview & Brief Testing

The following video by Leif (sm5bsz) is the most technical, as he performs sensitivity and  dynamic range lab tests on multiple SDRs including the Microtelecom Perseus, Airspy HF+ Dual Port, Airspy HF+ Discovery, Airspy Spyverter plus Airspy, SDRplay RSP1 and AFEDRI SDR-Net.

If you want to skip the testing procedures, a summary of the results are presented at 16:20,  31:06, 38:19, and 53:55 video time. In most tests the HF+ Discovery is the second best, after the Perseus.

The first in a series of videos that compare the dynamic range of six receivers: Microtelecom Perseus, Airspy HF+ Dual Port,, Airspy HF+ Discovery, Airspy Spyverter plus Airspy, SDRplay RSP1 and AFEDRI SDR-Net. Here blocking and second order intermodulation is studied with signal generators. Attenuators are used to make the noise figure 26 dB of all radios at the output of the 6 port Wilkingson splitter. This video is for dynamic range on 7.2 MHz. The Discovery is a pre-production unit and the noise figure is a little higher than that of regular production units for unknown reasons.

rx7compare-part1

In this article over on the SWLing Blog guest poster Guy Atkins submits a comparison video between the Airspy HF+ Discovery and an Elad FDM-DUOr ($899). Results appear to show that the HF+ has close to identical performance.

AirSpy HF+ Discovery: First Impressions on Medium Wave vs. Elad FDM-DUOr

Over on YouTube icholakov has posted two comparison videos. In the first he compares the HF+ Discovery to the HF+ Original. In the second video he compares the HF+ Discovery against an SDRplay RSP1A.

Airspy HF+ Discovery SDR vs. HF+ Original SDR - Blind Test

Airspy HF+ Discovery vs. SDRPlay RSP-1A on Medum Wave and Short Wave

We've posted about this review before, but it's still one of the best. Here Fenu-Radio compares the HF+ Discovery against a very expensive Winradio G33DDC and posts multiple comparison audio files. He concludes that the HF+ Discovery compares favorably to the WinRadio.

In this post, Arctic DX measures the sensitivty of the HF+ Discovery, providing a very useful sensitivity comparison table against multiple other SDRs. The HF+ Discovery comes in with excellent numbers.

Over on Twitter there has been a lot of activity too. In the following Tweet, Simon Brown, author of the popular SDR-Console V3 application notes that the HF+ Discovery is virtually immune to strong signals.

We've also seen how the HF+ Discovery's LF performance is so good that it's possible to simply connect a photodiode and see the light spectrum produced by CFLs.

PEPYSCOPE: A Simple Panadapter for HF Radios using RTL-SDR Direct Sampling

Over on GitHub user mcogoni (Marco/IS0KYB) has recently released a new program called Pepyscope. Pepyscope is a simple and fast panadapter application that is designed to be used with direct sampling capable RTL-SDR's such as our RTL-SDR Blog V3 units. Like other panadapters you simply connect the IF output from the hardware HF radio into the input of the RTL-SDR. Then Pepyscope gives you a waterfall display that helps users to easily visualize the spectrum.

Pepyscope is open source and runs on Linux PCs. So far Marco has tested Pepyscope with a KENWOOD TS-180S (single conversion with IF at 8.83 MHz) and an RTL-SDR v3. He has also uploaded a demonstration video on YouTube.

PEPYSCOPE: a simple panadapter for Linux and the RTL-SDR in direct sampling mode

SDRplay RSPDuo Diversity: Combing a Magnetic Loop and Miniwhip Antenna

The SDRplay team have posted some more videos that demonstrate the SDRplay Duo's diversity function. The SDRplay RSPDuo is a 14-bit dual tuner software defined radio capable of tuning between 1 kHz - 2 GHz. It's defining feature is that it has two receivers in one radio, which allows us to combine the signal from two antenna together.

In the video Jon uses a Wellbrook Magnetic Loop antenna and a Bonito Miniwhip antenna both connected to the RSP Duo. Individually each antenna receives the signal relatively poorly and fades in and out as conditions and signal reflections fluctuate. However, with diversity enabled the SNR is improved and fading is significantly reduced.

The method they use to combine signals is a relatively simple method called maximum-ratio combining (MRC). The idea is that the two signal channels are added together, with the currently stronger and less noisy channel having increased gain. So while the signal levels fluctuate, as long as one antenna can receive the signal you will see no fading.

SDRplay HF Diversity Demo

SDRplay note that the key to a good setup is to have the antennas spaced out at a quarter wavelength of the signal frequency that you are receiving. In a second video they show how to properly set up an antenna system for proper HF diversity receiving.

This video demonstrates how SDRuno diversity and the RSPduo can bring enhanced reception at HF using 2 antennas separated by approximately a quarter wavelength. It uses the the current version of SDRuno (V 1.32) and the dual tuner RSPduo SDR from SDRplay.

In this experiment we had a wire dipole with one leg approximately a quarter wavelength from a Boniwhip vertical - both were picking up similar strength signals before going into "diversity" (max ratio combination) mode.

The benefits of diversity tuning at HF are very dependent on many variables, most notably the changing nature of the reflected signal path and the degree to which noise and unwanted signals are not as coherent as the wanted signal.

Antenna and SDRplay set-up for HF diversity reception (rev1)

Using an Airspy HF+ Discovery to Hunt for HF Beacons

Over on YouTube Tech Minds has posted a video of him using an Airspy HF+ Discovery to hunt for signals like non-direction beacons (NDB's) and other morse code CW beacons. The Airspy HF+ Discovery is a new software defined radio that builds upon the already excellent original Airspy HF+.

One key improvement that many people have been experimenting with is it's improved VLF and LF capabilities, which is where most beacons are. It is capable of tuning down to 0.5 kHz (500 Hz). Over on Twitter, @prog (creator of these Airspy products) has been experimenting with simple and small ferrite loop antennas for VLF/LF and finding excellent results due to the low noise figure and good impedance matching of the HF+ Discovery.

Hunting HF Beacons With An Airspy HF+ Discovery

Reviews of the NanoVNA: An Ultra Low Cost $50 Vector Network Analyzer

A vector network analyzer (VNA) is an instrument that can be used to measure antenna or coax parameters such as SWR, impedance and loss. It can also be used to characterize and tune filters. It is a very useful tool to have if you are building and tuning home made antennas, filters or other RF circuits. For example if you are building a QFH or ADS-B antenna to use with an RTL-SDR, a VNA can help ensure that your antenna is properly tuned to the correct frequency. Compared to a standard SWR or network analyzer a VNA supplies you with phase information as well.

Until just recently, VNA's have cost roughly US$500 for a decent USB PC based unit like the miniVNA or PocketVNA, and have set people back thousands to tens of thousands of dollars for bench top units.

However, the cost of owning a VNA has now been reduced to only US$50 thanks to the NanoVNA. The open source NanoVNA project by @edy555 and ttrftech has been around since 2016, but only recently have Chinese sellers begun mass producing the unit and selling them on sites like Aliexpress, eBay and now Amazon. We note that it seems that there are some sellers selling them without shielding, so it might be worth double checking the listing to see if they mention that. All the listings we've seen seem to come with simple calibration kits as well.

The NanoVNA: A $50 Vector Network Analyzer
The NanoVNA: A $50 Vector Network Analyzer

The NanoVNA is a small credit card sized VNA. It has a built in LCD screen that can be used to display graphs directly, or it can also be connected to a PC and the graphs viewed via the NanoVNA Windows software. When purchasing you can opt to include a small battery for portable operation for a few dollars extra. The frequency range is from 50 kHz to 900 MHz, although you should note that above 300 MHz dynamic range performance is reduced.

Over on YouTube several hams and radio enthusiasts have recently uploaded videos demonstrating and reviewing the NanoVNA. The overall consensus is that the unit is accurate and works well. For additional support there is forum available at Groups.IO.

Below YouTube user IMSAI Guy reviews the NanoVNA. Check out IMSAI Guy's other videos too as he has several where he tests the NanoVNA on difference filters and antennas, and checks the accuracy.

#350 NanoVNA Vector Network analyzer 900MHz VNA for $50

Below is YouTube user joe smith's review. He also has two other NanoVNA videos on his channel where he shows how to use the NanoVNA to measure antenna impedance, and how to use the NanoVNA to create SPICE models for simulation.

The NanoVNA, a beginners guide to the Vector Network Analyzer

Finally YouTube user Oli gives another overview. Please note that the following video is in Polish, but YouTube captions can be set to English.

NanoVNA - omówienie, kalibracja, pomiar anteny i filtra [english subtitles]

We've also seen several recent text reviews:

NanoVNA - A short review. In this review nuclearrambo shows off the calibration kit, and shows a practical measurements of a directional coupler and 137 MHz QFH antenna.

NanoVNA compared with a Keysight fieldfox N9952A. Here nuclearrambo provides a comparison between the $50 NanoVNA and the $40,000+ Keysight FieldFox N9962A.

The NanoVNA, a real VNA at less than 48 €!. A review written in French, but Google Translate can be used. In this review David Alloza compares the NanoVNA against an Agilent E5062A benchtop VNA, and results look comparable.