Receiving Es’Hail-2 DVB-S2 on Ubuntu With LeanDVB

Yesterday we posted about a real time Windows demodulator for receiving amateur TV DVB-S/S2 on Es'Hail-2/QO-100. Recently another YouTube user "M Khanfar" also submitted a video tutorial showing how to decode Es'Hail-2 DVB-S2 on Ubuntu with an RTL-SDR and the LeanDVB decoder.

Khanfar notes that although the LeanDVB decoding method is not real time, his tests show that the LeanDVB method is able to work with a much lower SNR signal compared to the Windows demodulator. The process is to simply capture an IQ file with GQRX, then run LeanDVB on the command line with the recorded IQ file. It will create a TS file that can be played in any media player.

His receiving setup consists of an RTL-SDR, 100cm dish, modified LNB and a home made bias tee that can switch his LNB between horizontal and vertical polarization.

QO-100 DVB-S2 Decoding

A Raspberry Pi and RTL-SDR Based Boombox

Thank you to Walter P. for writing in and sharing with us his conversion of an old analog boombox into a fully functional wideband software defined radio based on an RTL-SDR dongle and upconverter.

Walters Ghettoblaster RTL-SDR Radio
Walters Boombox RTL-SDR Radio

Inside the boombox Walter stripped away the analog circuitry and replaced it with a new LCD screen, Raspberry Pi, RTL-SDR, upconverter and an audio amplifier. Four rotary switches on top of the radio are used to control the frequency, demod mode and volume, and there is also a numerical keypad which can be used to enter the frequency directly. 5V and HF antenna connectors have been added to the side, as well as an upconverter enable switch on top. Walter also added a Spyserver mode to the software, which allows you to connect to the radio over WiFi with SDR#, although he notes that using the integrated Pi WiFi module seems to introduce noise on the speakers.

If you're interested in building a similar device, Walter has provided the full Python code and installation instructions for his build.

Edit 09 May 19: It was pointed out that the word "ghettoblaster" could be considered offensive in some cultures. We have changed the word in our article to "boombox" and apologize for any unintended offence.

RaspBRadio - A Raspberry Pi and RTL-SDR Based Boombox

Windows Realtime DVB-S Demodulator for Es’Hail-2 & Amateur TV Available

Thank you to Happysat for writing in and noting that over on the Amsat-DL forums user Markro92 has uploaded a realtime Windows DVB-S demodulator with GUI. The demodulator works with the RTL-SDR, HackRF, SDRplay and PlutoSDR support is due to be added soon. Happysat notes the following: 

It can demodulate DVB-S and S2 signals with very low symbolrate on Es Hail-2 geosat on 25,9 East from the Wideband Transponder. So you do not need a modified lnb or modified satelitte stb :) Of course you can also see the amateur tv streams which people uplink theirself.

To see if there is any stream active one can visit the wideband WebSDR and above the stream the info is displayed which parameters in use (symbol rate and mode dvbs(2)) so you can adjust in the Demodulator program. Stream + Chat: https://eshail.batc.org.uk/wb/ .

The latest version of the software will always be always available at http://v.1337team.tk/dvb-s_gui_amsat.zip.

Happysat Decoding a DVB-S2 stream from Es-Hail2 with an RTL-SDR V3.
Happysat Decoding a DVB-S2 stream from Es-Hail2 with an RTL-SDR V3.

United Nations Expert Arrested in Tunisia for Using an RTL-SDR

Recently several newspapers [CNA] [France24] [Guardian] [MEM] [HuffPostMG] have reported a story about a United Nations (UN) expert being arrested in Tunisia for having an RTL-SDR dongle. Dr. Moncef Kartas is a member of a UN panel of experts investigating violations of the UN arms embargo on Libya. 

On March 26, 2019 Kartas was arrested on his arrival in Tunisia on suspicion of spying for "unnamed foreign parties", and one of the key arguments being used against him is that he was in possession of and had used an RTL-SDR dongle. In the France24 article, they explain that he was using the RTL-SDR as part of his investigation for monitoring air traffic to Libya in an attempt to link flights against violations of the arms embargo. 

As Kartas' business in Tunisia was to present his findings on the arms embargo violations, other experts believe that the arrest is politically motivated, and that ownership of the RTL-SDR for espionage is simply being used as an excuse. However, while the investigation continues Kartas remains in jail, and in Tunisia a charge of espionage could be punishable by death. As Kartas holds UN diplomatic immunity, and as Tunisia is a member of the UN, the arrest and detainment is seen as illegal.

We hope that Kartas is safe and will be released soon. If you want to keep an eye on his story, there is a Twitter account called "Free Moncef Kartas" @FreeMoncefK that appears to be posting news articles and tweets about his arrest.

Human Rights Watch Denounces the arrest of Moncef Kartas
Human Rights Watch Denounces the arrest of Moncef Kartas [Photo Source]

KerberosSDR Direction Finding with Android App Demo and Tutorial

Over on our YouTube channel we've uploaded a short video that gives a tutorial and demo of the KerberosSDR being used as an RF direction finding system in a car. If you weren't aware, KerberosSDR is our recently released 4x Coherent RTL-SDR which can be used for tasks such as direction finding and passive radar. KerberosSDR was successfully crowdfunded over on Indiegogo, and we have recently completed shipments to all backers. Currently we are taking discounted pre-orders for a second production batch on Indiegogo.

In the video we use a Raspberry Pi 3 B+ running the KerberosSDR image as the computing hardware. The Pi 3 is connected to a high capacity battery pack. It is important to use a high quality battery pack that can output 3A continuously as this is required for the Raspberry Pi 3 B+ to run without  throttling. The battery pack we used has multiple outputs so we also power the KerberosSDR with it.

Once powered up we connect to the KerberosPi WiFi hotspot, and then browse to the web interface page. We then tune the KerberosSDR to a TETRA signal at 858 MHz, perform sample and phase calibration, set the decimation and FIR filtering, and then enable the direction finding algorithm. At this point we enter the Android app and begin direction finding and logging our data.

After driving for a few minutes we stop and check the logfile and find that the majority of the bearing lines point in one direction. With this info, a drive in the direction of the bearing points to gather more data is performed. Once additional data was gathered we open the log file up again, and see where all the bearing lines cross. Where they cross indicates the location of the 858 MHz transmitter. The heatmap data also gives us a second confirmation that the transmitter is located where we think.

NOTE: Some of the features shown in the video like the heatmap, confidence settings and plot length settings are not yet released in the current version of the app. They will be released next week.

Full instruction on using the KerberosSDR are available at rtl-sdr.com/ksdr.

KerberosSDR Direction Finding With Android App Demo and Tutorial

The 2019 New England Workshop for SDR

The New England Workshop on Software Defined Radio (NEWSDR) is a yearly conference that hosts multiple SDR related talks. Previously we posted a selection of our favorite 2018 talks which involved topics such as remote sensing of space with SDR, wireless deep learning and multi-objective SDR optimization.

This years NEWSDR event will been held on Jun 13 and 14 at the University of Massachusetts in Boston. They are currently offering pre-registration for free, and are looking for poster presentations.

This year is the 9th iteration of NEWSDR and it will be held at the University of Massachusetts Boston campus on June 13 and 14. Registration is free and we are also accepting submissions for poster presentations and elevator pitches. The event is an excellent networking opportunity and includes technical presentations as well as demonstrations from industry sponsors (Ettus/NI, MathWorks, Analog Devices, and MediaTek).

NEWSDR 2019 Poster
NEWSDR 2019 Poster

SingalsEverywhere: Running OpenWebRX on a PlutoSDR with PlutoWEB Firmware

Over on YouTube Corrosive from the SignalsEverywhere channel has uploaded a new video that shows how to install the the PlutoWEB Firmware on a PlutoSDR, which allows OpenWebRX to run directly on the PlutoSDR itself. OpenWebRX is a SDR streaming platform that enables people to connect to the SDR remotely over the internet. Multiple users can access the SDR at the same time as well. Many public OpenWebRX servers running on KiwiSDRs can be found at sdr.hu as the KiwiSDR uses it by default.

The PlutoSDR is a low cost (typically priced anywhere between $99 - $149 depending on sales) RX/TX capable SDR with up to 56 MHz of bandwidth and 70 MHz to 6 GHz frequency range. It also has an onboard FPGA and ARM Cortex-A9 CPU which can be used to run programs on the PlutoSDR itself.

Corrosive's video shows us how to install PlutoWEB which is an unofficial firmware package for the PlutoSDR. It comes preinstalled with many programs such as OpenWebRX and dump1090. He then shows how to set up OpenWebRX and then shows a demo of it in action.

OpenWebRX via PlutoSDR using PlutoWEB Firmware

Weather Satellite Images from Geostationary COMS-1 Received

COMS-1 Geostationary Satellite Footprint
COMS-1 Geostationary Satellite Footprint https://www.wmo-sat.info/oscar/Satellites/view/33

COMS-1 is a geostationary weather satellited operated by the Korean Meteorological Agency (KMA) which was launched back in 2010. It is similar to NOAA GOES satellites as it is also geostationary orbit (@128.2°E - footprint covers all of Asia + AUS/NZ), and so is far away enough to image the entire disk of the Earth at once. Unfortunately, unlike the GOES satellites which have in the past few years become relatively easy for hobbyists to decode, the COMS-1 LRIT and HRIT downlink data is encrypted by KMA. KMA only appear to provide decryption keys to governments, research institutes and large organizations upon request.

However, recently Australian @sam210723 was able to successfully create code to decrypt the key message file and obtain the images. From a previous Twitter post of his, it appears that the encryption keys from the KMA example code are actually valid and can be used without needing to apply for a key.

Sam notes that he'll soon release a full blog post on his results, but for now he has an older post from last year that explains a bit about the satellite and decryption of the LRIT Key. His code is available on GitHub, and in a recent Twitter post he shows some example images that he's been able to receive using an Airspy SDR.