Tagged: bitcoin

Bitcoin Satellite Now Supports Lightning Payments: Receive with RTL-SDR

Bitcoin is a digital currency based on blockchain technology, and Blockstream are a large innovator in the Bitcoin world. They have recently been developing the 'lightning network' which is a layer that sits on top of the blockchain. The goal of the lightning network is to provide a second layer that helps to speed up bitcoin transactions and alleviate network congestion.

In a previous post we noted that Blockstream have data channels leased on several geostationary satellites. The goal of these satellites is to help users download the blockchain, which is the ledger of all bitcoin transactions ever made. Over time the ledger grows and becomes larger and larger, and at the time of writing is currently about 200 GB in size. Rural/field users of Bitcoin with slow, intermittent, or no internet connection can use this satellite to download or update their ledger and confirm that they have received payments.

To receive the satellite an RTL-SDR dongle together with a Linux PC, LNB and satellite dish antenna are used. More information about setting up a receiver can be found on their GitHub.

Recently Blockstream have released news that their satellites now support Lightning transactions. In addition the Asia-Pacific satellite is now online. This should help boost adoption of the lightning network among rural users.

Blockstream satellite currently covers almost the entire world
Blockstream satellite currently covers almost the entire world

Securing the Bitcoin network against Censorship with WSPR

Bitcoin WSPR Test Setup
Bitcoin WSPR Test Setup

If you didn't know already Bitcoin is the top cryptocurrency which in 2017 has begun gaining traction with the general public and skyrocketing to a value of over $19,000 US per coin at one point. In addition to providing secure digital transactions, cryptocurrencies like Bitcoin are intended to help fight and avoid censorship. But despite this there is no real protection from the Bitcoin internet protocol being simply blocked and censored by governments with firewalls or by large ISP/telecoms companies.

One idea recently discussed by Nick Szabo and Elaine Ou at the "Scaling Bitcoin 2017" conference held at Stanford University is to use the something similar to WSPR (Weak Signal Propagation Reporting Network) to broadcast the Bitcoin network, thus helping to avoid internet censorship regimes. To test their ideas they set up a HackRF One as a transmitter and RTL-SDR and used GNU Radio to create a test system.

Other ideas to secure the Bitcoin network via censorship resistant radio signals include kryptoradio, which transmits the network over DVB-T, and the Blockstream satellite service which uses an RTL-SDR as the receiver.

If you're interested in the presentation the talk on WSPR starts at about 1:23 in the video below. The slides are available here.

Scaling Bitcoin 2017 Stanford University - Day 2 Afternoon

Receiving the Bitcoin Blockchain from Satellites with an RTL-SDR

Bitcoin is the worlds first and most popular digital currency. It is steadily gaining in value and popularity and is already accepted in many online stores as a payment method. In order to use Bitcoin you first need to download a large database file called a ‘blockchain’, which is currently at about 152 GB in size (size data obtained here). The blockchain is essentially a public ledger of every single Bitcoin transaction that has ever been made. The Bitcoin software that you install initially downloads the entire blockchain and then constantly downloads updates to the blockchain, allowing you to see and receive new payments.

Blockstream is a digital currency technology innovator who have recently announced their “Blockstream satellite” service. The purpose of the satellite is to broadcast the Bitcoin blockchain to everyone in the world via satellite RF signals, so that even in areas without an internet connection the blockchain can be received. Also, one problem with Bitcoin is that in the course of a month the software can download over 8.7 GB of new blockchain data, and there is also the initial 152 GB download (although apparently at the moment only new blocks are transmitted). The satellite download service appears to be free, so people with heavily metered or slow connections (e.g. 3G mobile which is the most common internet connection in the third world/rural) can benefit from this service as well.

The service appears to be somewhat similar to the first iteration of the Outernet project in that data is broadcast down to earth from satellites and an R820T RTL-SDR is used to receive it. The blockstream satellite uses signals in the Ku band which is between 11.7 to 12.7 GHz. An LNB is required to bring those frequencies back down into a range receivable by the RTL-SDR, and a dish antenna is required as well. They recommend a dish size of at least 45 cm in diameter. The signal is broadcast from already existing satellites (like Outernet they are renting bandwidth on existing satellites) and already 2/3 of the earth is covered. The software is based on a GNU Radio program, and can be modified to support any SDR that is compatible with GNU Radio. They write that the whole setup should cost less that $100 USD to purchase and set up.

To set it up you just need to mount your satellite antenna and point it towards the satellite broadcasting the signal in your area, connect up your LNB and RTL-SDR and then run the software on your PC that has GNU Radio installed.

More details can be found on the Blockstream Satellite website, and technical details about the software and hardware required can be found on their GitHub page.

How the Blockchain satellite works (From https://blockstream.com/satellite/howitworks/)
How the Blockchain satellite works (From blockstream.com/satellite/howitworks/)

Some may wonder what’s the point if you can’t transmit to the service to make payments with it. Over on this Bitcoin Reddit thread user “ideit” explains why it’s still useful in this nice quote.

You sell goats in a small village. A customer wants to buy a goat, but you have no banks so people have put their money into bitcoin. Your customer goes to the village center which has a few computers hooked up to the internet. He sends you payment then comes to get his goat. You don’t have internet near your goat farm, but you’re connected to the satellite so you can see he sent you payment and you give him his goat.

Or, you live in an area that caps your bandwidth. You want to run a full node, but downloading blocks eats away at your cap. Connecting to a satellite reduces your bandwidth usage.

Or, you’re using an air gapped laptop to sign transactions from your wallet for security reasons. You can now connect that laptop to the satellites so your laptop can generate its own transactions without connecting to the internet.

Or, your internet connection is terrible. You can usually broadcast transactions since they’re small, but downloading blocks and staying in sync with the blockchain is literally impossible. Connect to a satellite and now it’s simple.