Category: Marine

Decentralizing AIS: Trustless Maritime Tracking with SDR

Recently, Owen Taylor, the CEO of WAKE (Worldwide AIS Network), wrote in to us asking if they could promote their project, which is a decentralized AIS aggregation network based on receivers like RTL-SDR. The twist compared to existing aggregators like marinetraffic.com is that WAKE aims to reward users via a crypto token and simultaneously solve the distributed verification problem to avoid problems like spoofing and poor transparency. 

The post below is their own words, and we note that we are not affiliated with WAKE.


Every second, ships transmit short bursts of data over VHF, broadcasting their position, speed, course, and identity. This is AIS (Automatic Identification System), an open, unencrypted protocol that lets vessels, ports, and coastal authorities maintain a shared picture of maritime traffic. Beyond collision avoidance, AIS feeds into port logistics, environmental monitoring, search and rescue operations, and even the financial analysis that drives global commodities trading.

For years, much of this coverage has been built on a mix of official receivers, satellites and a scattered network of volunteers, many of them SDR hobbyists streaming data from antennas on rooftops and coastal hills.

This model works, until it doesn’t. AIS has a well-known weakness: there’s no built-in authentication. Anyone can transmit a valid-looking AIS message. That opens the door to errors and deliberate spoofing, and right now there’s no universal method for verifying what’s real.

How AIS Works

AIS operates on two dedicated VHF channels, 161.975 MHz and 162.025 MHz, using 9600 bps Gaussian Minimum Shift Keying (GMSK) modulation. Transmissions follow a self-organizing time division multiple access (SOTDMA) scheme, where each station selects its own time slots to avoid collisions.

An AIS message can carry vessel identity (MMSI), position (latitude, longitude), speed over ground (SOG), course over ground (COG), navigational status, and other voyage data. Ships transmit at intervals from every few seconds (for fast-moving craft) to every few minutes (for anchored vessels).

For terrestrial reception, the chain looks familiar to any SDR operator:

Antenna → RTL-SDR (or similar) → AIS decoder software → Data feed.

Noise floor, antenna gain, and local RF environment all influence range, which for a coastal VHF station is typically 20–40 nautical miles. Higher elevations and directional antennas can stretch this significantly.

The Current Aggregation Model

Global AIS coverage today comes from a mix of satellite AIS for open-ocean tracking and terrestrial AIS for coastal areas, ports, and choke points. The terrestrial component is heavily dependent on a patchwork of volunteer-operated receivers, often nothing more than a VHF antenna, an RTL-SDR, and a small computer feeding data into a central platform.

Commercial services like MarineTraffic (now owned by Kpler), VesselFinder, and AISHub aggregate these feeds into global datasets that are then resold to shipping companies, commodity traders, insurers, and governments. The scale is impressive, but it comes at a cost to transparency.

In a recent video circulating on Reddit, the CEO of Kpler openly described their “monopoly” on maritime data, built on the volunteers giving up their data for free. While this may be good for their commercial positioning, it also highlights the underlying issue: a small number of companies effectively control access to AIS data, much of which was gathered for free from hobbyists.

From a technical perspective, the aggregation model has another weakness: it is built on trust. If a feed sends false data, whether through AIS spoofing, misconfigured hardware, or bad GPS input, that information can still enter the global record. Most platforms only filter out data that is obviously invalid, and there is no universal multi-source verification or cryptographic proof of authenticity in the AIS ecosystem.

The Data Integrity Problem

AIS is intentionally open and unencrypted to encourage wide adoption and interoperability. The downside is that nothing stops someone from transmitting a false position for a real ship or inventing an entirely fake vessel.

Spoofing incidents have been documented around the world. “Ghost ships” have appeared hundreds of miles inland. Vessel positions have been falsified to hide illegal fishing or smuggling. In some regions, ships broadcast fake locations to evade sanctions or mislead competitors.

Because AIS is used for everything from traffic management to environmental compliance, bad data has real consequences. It can mislead port authorities, disrupt logistics chains, and undermine safety systems that depend on knowing exactly who is nearby.

Distributed Verification

When we talk about “distributed” in this context, we mean a network of many independent AIS receivers,  owned and operated by different people in different locations, all working together to validate the same signals. No single entity has control over the data pipeline, and no single point of failure can compromise the entire dataset.

This approach aligns with what’s known as DePIN (Decentralized Physical Infrastructure Networks). In a DePIN, real-world hardware, in this case, AIS receiving stations powered by RTL-SDR dongles, is deployed by a distributed community, and the data it produces is aggregated, validated, and made available on a blockchain. Contributors are often incentivized for their role in maintaining the physical infrastructure and supplying high-quality data.

Applied to AIS, DePIN solves the monopoly and trust problem by creating:

  • Redundancy — multiple stations cover the same area, making spoofing and errors easier to detect.

  • Transparency — all verification events can be independently audited.

  • Resilience — coverage doesn’t vanish if one provider shuts down or changes terms.

From a technical perspective, defeating AIS spoofing requires proving that a received message is both authentic and physically plausible. A distributed verification system can achieve this by:

  1. Time of Arrival (TOA) Checks
    Comparing reception timestamps across geographically separated receivers. A false signal transmitted from shore will produce a different TOA pattern than one from a vessel at sea.

  2. Motion Consistency
    Checking positions against realistic limits for speed, acceleration, and turn rate. If a ship appears to jump 50 nautical miles in a minute, it fails.

  3. Cross-Coverage Triangulation
    Using relative signal strength and geometry between receivers to estimate origin and compare it to the reported position.

  4. Peer Agreement
    Looking for identical messages confirmed by several uncorrelated receivers. Messages verified by multiple independent nodes have a much higher trust score.

Once these checks are complete, the verification results, not necessarily the raw AIS payload, can be recorded on a tamper-proof, public ledger (such as a blockchain). This creates a permanent, auditable history of which AIS messages passed validation and when, allowing anyone to verify the integrity of past data without relying on a single company’s database.

Incentivizing a Trustless AIS Network

WAKE (Worldwide AIS Network) applies distributed verification principles to AIS in a way that directly involves and rewards the SDR community. At its core, WAKE is a decentralized network of independently operated AIS receivers, often built around RTL-SDRs or similar hardware,  working together to validate and record maritime data in a public, tamper-proof ledger.

In the WAKE model, contributors run AIS stations that submit decoded messages to the network. These messages are cross-checked against others received in the same geographic area. A message is only accepted if it passes both multi-receiver consensus and physics-based checks such as motion consistency and TOA analysis. This ensures that false or spoofed data is rejected before it ever reaches the historical record.

For the SDR community, this represents an evolution of an existing role. Many hobbyists already contribute AIS feeds without recognition or compensation. In WAKE, you’re not just relaying what you receive, you’re part of a validation mesh that makes AIS data more secure and tamper-resistant.

Because WAKE is built on a trustless model, no single operator, including WAKE itself can alter or suppress verified data. The integrity of the maritime picture is maintained collectively, with every contributor helping to keep it honest.

For SDR operators, the incentive is clear: you can keep doing what you already do best, running reliable receivers with clean reception and precise timing, but now with direct rewards for your contribution and the satisfaction of helping build a more open, diverse, and verifiable AIS data ecosystem.

You can learn more about WAKE Here.

Closing Thoughts

AIS has transformed maritime safety and logistics, but it was designed for trust, not for security. That’s fine when all players are honest, but as spoofing incidents have shown, trust alone isn’t enough.

A verification layer built on distributed SDR receivers is one of the most promising paths toward a tamper-proof global AIS dataset. It’s not about replacing the existing AIS ecosystem, but strengthening it.

The SDR community is uniquely positioned to lead that shift. By participating in networks that focus on data integrity, you can help ensure the maritime picture is as accurate tomorrow as it was yesterday, and maybe even fill in the parts of the map no one else can see.

DragonOS: Setting up AISMon with WINE and Virtual Audio Sink for HackRF and RTL-SDR

Over on his YouTube channel Aaron, creator of the DragonOS image (a Linux image with many built-in SDR compatible programs) has uploaded a new video showing how it is possible to run the Windows only AISMon software on Linux, using WINE. WINE is a Windows emulator for Linux which allows users to run some Windows software on Linux.

In the video Aaron shows how to set up WINE on the DragonOS Linux image, how to run AISMon with it, and how to set up the Virtual Audio Cable sink which is required to pass the audio from SDR++ to AISMon. He also shows how he tests his setup using the AIS-Simulator software with a HackRF, and an RTL-SDR for receiving.

DragonOS FocalX Setup AISMon with WINE + Virtual Audio Sink (HackRF, RTLSDR, SDR++, AIS-Simulator)

Marine Vessel AIS and AirNav ShipXplorer

AirNav systems are a company that run radarbox.com, one of the big ADS-B aggregation tracking sites for tracking aircraft around the world. They also run a similar platform called ShipXplorer for tracking marine vessels using AIS data. The team at AirNav have provided us with a nice explanation of what AIS is and how it works. They note that they also sell a modified RTL-SDR with AIS filters and an LNA built in.

Presumably AirNav are seeking feeder volunteers for their ShipXplorer service with the submission of this post. We receive no compensation for this post and do not endorse one aggregator over another.

Below is the text from AirNav:

How Does the Automatic Identification System (AIS) Work

Introduction

Automatic Identification System (AIS) is a crucial technology used for monitoring and tracking the movements of vessels at sea. It has become an essential tool for ensuring maritime safety, security, and efficiency. In this blog post, we will explore how AIS vessel tracking works, its benefits, limitations, and future prospects.

How Does AIS Vessel Tracking Work?

AIS is an automatic tracking system that uses transceivers installed on ships to transmit vital information such as position, speed, course, name, call sign, type of ship, and destination. This data is then received by terrestrial or satellite-based AIS receivers and transmitted to various stakeholders, including shore-based authorities, other ships, and online platforms. The information is displayed in real-time, allowing users to monitor the movement of vessels with pinpoint accuracy.

There are two types of AIS messages: Class A and Class B. Class A messages are mandatory for all ships over 300 gross tons, while Class B messages are optional but recommended for smaller vessels. Class A messages have a higher transmission power and update rate than Class B messages, making them more reliable for long-range detection.

AIS operates principally on two dedicated frequencies or VHF channels: AIS 1: Works on 161.975 MHz- Channel 87B (Simplex, for the ship to ship) AIS 2: 162.025 MHz- Channel 88B (Duplex for the ship to shore), which provide a range of up to 20 nautical miles for terrestrial stations and up to 1,000 nautical miles for satellite systems. The system uses Time Division Multiple Access (TDMA) technology to avoid signal collisions and ensure seamless communication between multiple vessels and base stations.

Benefits of AIS Vessel Tracking

AIS vessel tracking offers numerous benefits, including enhanced safety, improved operational efficiency, and better decision-making capabilities. Some of these benefits include:

  1. Improved Collision Avoidance
    By providing accurate information about a vessel's location, speed, and direction, AIS helps prevent collisions and reduces the risk of accidents. Ships can use this information to maintain safe distances from each other and navigate crowded waterways safely.
  2. Increased Efficiency
    AIS enables ships to optimize their routes and fuel consumption, leading to increased efficiency and cost savings. By sharing their positions and intentions, vessels can coordinate their movements and avoid wasting time and resources on unnecessary maneuvers.
  3. Enhanced Search and Rescue Operations
    In case of emergencies, AIS provides critical information that helps search and rescue teams locate and assist distressed vessels quickly. The real-time data provided by AIS allows responders to make informed decisions and allocate resources effectively.
  4. Better Decision Making
    AIS data can be integrated with other systems, such as weather forecasting tools, to help shipping companies make informed decisions about their operations. For example, they can adjust their schedules based on predicted weather conditions or reroute their vessels to avoid congested areas.

Limitations of AIS Vessel Tracking

While AIS vessel tracking is a powerful tool, it does have some limitations. These include:

  1. Limited Coverage
    Although AIS signals can travel up to 20 nautical miles via terrestrial stations, this coverage may not be sufficient in remote or offshore areas where there are no base stations. Satellite-based AIS systems address this limitation but come at a higher cost.
  2. Potential Security Risks
    Since AIS transmissions are unencrypted, there is a potential risk of interception and misuse by malicious actors. However, measures such as frequency hopping and encryption can mitigate these risks.

Future Prospects of AIS Vessel Tracking

As technology advances, AIS vessel tracking is expected to evolve and offer even greater benefits.

  1. Integration with Autonomous Shipping
    Autonomous ships rely heavily on sensor data for navigation and collision avoidance. AIS integration with autonomous shipping systems could enhance situational awareness and improve overall safety.
  2. Real-Time Cargo Monitoring
    AIS could be used to track individual cargo containers in real-time, enabling logistics companies to monitor their shipments more accurately and efficiently.
  3. Environmental Monitoring
    AIS-equipped vessels could collect environmental data, such as water temperature, salinity, and pollution levels, helping researchers and policymakers better understand and manage marine ecosystems.

Conclusion

AIS vessel tracking is an indispensable tool for enhancing maritime safety, security, and efficiency. While it has some limitations, advancements in technology continue to expand its capabilities and applications. As shipping becomes increasingly digitalized, AIS will remain a cornerstone of maritime communications and surveillance.

The SHipXplorer AIS Optimized RTL-SDR

AirNav Systems Launch AIS Aggregator ShipXplorer.com

AirNav Systems are behind the RadarBox ADS-B tracking aggregator, one of several companies that use data obtained by volunteers running RTL-SDR dongles to collect ADS-B flight data from all over the world.

Recently they've launched a new project called ShipXplorer.com which is a marine AIS aggregation service. Like RadarBox, ShipXplorer relies on volunteers running receiver stations all around the world. AIS is an acronym for 'Automatic Identification System', and in a similar way to ADS-B on aircraft, AIS allows the real time tracking of marine vessel positions. 

To help enthusiasts with AIS reception, AirNav have also launched an AIS optimized RTL-SDR dongle. At the moment we're not exactly sure how this dongle works, as it advertises NMEA output with no add-on programs required. So this may imply it has some onboard processing. But reviews imply that it is just an RTL-SDR dongle with TCXO. We are currently inquiring with AirNav Systems. UPDATE: We have clarified with AirNav and confirmed that the dongle is an RTL-SDR dongle with AIS modifications (LNA & TCXO). There is no onboard processing and the advertising text was an error. 

AirNav Systems write:

Some great news on a new product we've been developing for the last year and that's just been released.
 
As you know our company has been in the industry for over 20 years, offering innovative and unique flight (RadarBox) tracking solutions. We supply multi-million USD companies with reliable/accurate worldwide real-time flight information and the RadarBox.com portal has now over 1.3 million accounts registered.

I'm reaching out to you to introduce you to AirNav System's ship tracker, ShipXplorer.com, which we launched a few months ago 
 
About ShipXplorer.com:
ShipXplorer is a vessel tracking website that tracks global vessel movements in real time. ShipXplorer was developed to cater to the increasing navigational and tracking challenges faced by the maritime industry. In addition to offering professional maritime tracking solutions, the platform is also available for public use, with features and services specially developed for the burgeoning maritime enthusiast and vessel spotting community.
 
ShipXplorer.com
ShipXplorer.com Screenshot
ShipXplorer Screenshot
ShipXplorer Screenshot
ShipXplorer.com Screenshot
ShipXplorer.com Screenshot
In addition to our recently launched ship tracking portal, we have a variety of AIS hardware, such as dongles and AIS antennas. 
 
ShipXplorer AIS Dongle:
This high-performance dual channel AIS USB Receiver decodes AIS transmissions and enables the reception of AIS messages and data directly onto devices such as a Raspberry Pi or Laptop.
ShipXplorer AIS Optimized RTL-SDR Dongle
ShipXplorer AIS Optimized RTL-SDR Dongle

ShipXplorer AIS Antenna:
ShipXplorer's omnidirectional AIS Antenna is optimized for long-range, dual channel (Channel A and B) 162 MHz VHF reception. It also ships with a 30 ft cable (SMA connector). Meant for outdoor use, this antenna is built with a fiberglass & aluminum alloy and can weather prolonged exposure to the elements.

ShipXplorer AIS Antenna
ShipXplorer AIS Antenna
ShipXplorer Sea Range AIS Receiver:
SeaRange is ShipXplorer's newest 162 MHz, dual channel, AIS receiver. This brand-new model includes an added filter and an inbuilt amplifier designed to optimize AIS reception on both 162.025 MHz & 161.975 MHz frequencies.
And we are currently working on expanding our AIS coverage globally. 
ShipXplorer Sea Range AIS Receiver
ShipXplorer Sea Range AIS Receiver
ShipXplorer website: https://www.shipxplorer.com

ShipXplorer hardware: https://www.shipxplorer.com/store

 
Sharing AIS Data with ShipXplorer: 
 
And recently, we've also introduced the possibility of sharing AIS data with us using the AIS Dispatcher:
 
Some of the benefits feeders receive for sharing data with ShipXplorer include: 
  1. Free Business Account Access (benefit from all possible website features for free, while sharing data with ShipXplorer) 
  2. Dedicated Whatsapp, Facebook & Telegram Groups
  3. Access to ShipXplorer' MyStation page where users can monitor all traffic received by their own units.

SDRangel Now Available on Android: Mobile ADS-B, AIS, APT, Digital Voice, POCSAG, APRS, RS41 Radiosonde Decoders

SDRangel is a free open source software defined radio program that is compatible with many SDRs, including RTL-SDRs. SDRAngel is set apart from other programs because of it's huge swath of built in demodulators and decoders.

Thank you to reader Jon for writing in and noting that SDRangel has recently been released for Android as a free Google Play download. This is an amazing development that could open up many doors into portable decoding setups as the Android version supports almost every decoder implemented on the desktop version. Jon writes:

It includes most of the functionality of the desktop version of SDRangel, including:

  • AM, FM, SSB, Broadcast FM and DAB, AIS, ADS-B, Digital Voice (DMR, dPMR, D-Star, FreeDV), Video (DVB-S, DVB-S2, NTSC, PAL), VOR, LoRa, M17, Packet (AX.25), Pager (POCSAG), Radiosonde (RS41), Time signal (MSF, DCF77, TDF and WWVB) modems.
  • RTL SDR, Airspy, Airspy HF, LimeSDR, HackRF and SDRplay support via USB OTG as well as networked SDRs
  • 2D and 3D signal analysis in both time and frequency domain with statistical measurements of SNR, THD, THD+N, SINAD, SFDR and channel power
  • Satellite tracker, star tracker, maps and rotator controller

It should work on Android 6 and up. It’s a straight port of the desktop application, so although it will run on a phone, probably best used on a large tablet with a stylus or mouse.

SDRangel on Android
SDRangel on Android

ESAR – Extraordinarily Simple AIS Receiver written in C

Thank you to Richard Gosiorovsky for submitting his latest SDR project called ESAR (Extraordinarily Simple AIS Receiver). AIS stands for Automatic Identification System and is used by marine vessels to broadcast their GPS locations in order to help avoid collisions and aide with rescues. An RTL-SDR with the right software can be used to receive and decode these signals, and plot ship positions on a map.

Richards code comes as raw C code, so you will need some knowledge on C code compiling to use it. Being so simple, the code is also a great resource for learning how to access data from an RTL-SDR, and write a decoder. Richard writes:

[ESAR] takes less then 300 lines of programming code and no additional software is necessary (like SDR# or audio piping).

It was intended mainly as exercise in digital signal processing.

All you need is RTL-SDR dongle with driver and rtl_tcp command. Simple dipole antenna is sufficient. If all this you have just compile C code (in the attachment) using MS Visual Studio.

Before running ESAR run rtl_tcp command with this parameters:

rtl_tcp.exe -f 162e6 -s 300000 -a 127.0.0.1 -p 2345 -g 48.0

It comes with GNU licence so converting output to NMEA format or any graphical output is free choice of other SDR enthusiasts.

Richard has shared the C code file directly with us, and it can be downloaded from our server here.

ESAR Code Screenshot

Demonstrating the New 3D Maps in SDRAngel

In December of last year we posted about a video demonstrating the many features that the SDRAngel software comes standard with. Recently they've added a new feature which are 3D maps that can be used to visualize signal data.

In the latest video demonstration they show these 3D maps projecting NOAA weather satellite images onto a 3D globe and at the same time tracking the NOAA satellites over the globe as it produces imagery. They also show the software visualizing a 3D model of aircraft on the globe, using live ADS-B data to show aircraft maneuvers when taking off, cruising and landing. With multiple SDRs they also show how the visualization can be combined with air traffic voice. Finally they also show marine vessels being visualized via live AIS data. There appear to be a wide range of vessel 3D models implemented.

A List of Crowd Sourced SDR Data Exchanges

Over on Reddit u/onemindisbuddha has put together an interesting list highlighting the number of crowd sourced data aggregators that use RTL-SDRs or similar hardware.

A common example of a data aggregator that makes use of RTL-SDRs is most of the flight tracking websites, such as FlightAware and FlightRadar24. Contributors to the service will usually set up RTL-SDR + Raspberry Pi based receivers that feed ADS-B aircraft data received from the local area to these websites. Data from contributors from all over the world are then combined onto a single map, allowing for a global live picture of aircraft traffic.  

Some other examples on the list that use RTL-SDRs include Amateur Radio APRS tracking, marine traffic, police/EMS audio feeds, train traffic, weather audio feeds, satellite ground station feeds and general web based remote SDR access. Added to the list are also aggregators based on other devices for applications like lightning detection and seismic activity reporting.

Aggregators List Partial Screenshot