Tagged: Radiosonde

Andreas Spiess Tracks Weather Balloons with a TTGO LoRa Board and RTL-SDR

Earlier in August we posted about radiosondy.info and the MySondy radiosonde receiver. Radiosondy.info is an internet service that aggregates radiosonde weather balloon data received and decoded by RTL-SDR users all over the world. MySondy is a cheap TTGO LoRa receiver that is modified with custom firmware and combined with a companion Android app in order to create a portable radiosonde receiver. A radiosonde is a small sensor and radio package normally attached to a weather balloon. Meteorological agencies around the world typically launch two balloons a day from several locations to gather data for weather prediction. With cheap hardware like an RTL-SDR and the right decoding software it is possible to receive weather and GPS data from the weather balloons launched in your area. 

Over on his popular YouTube channel, Andreas Spiess "the guy with the Swiss accent" has uploaded a video featuring the RadioSondy and the MySondy receiver projects. In the video Andreas first explains what a radiosonde is, and who launches them. He goes on to show the RadioSondy website and how to track balloons on it. He then shows the portable MySondy receiver for tracking radiosondes, before finally showing how to set up a permanent fixed ground station with RTL-SDR and Raspberry Pi for contributing to the RadioSondy aggregation website.

In amongst the demonstrations he also goes on several hunts for weather balloons that have landed near him, ultimately recovering two radiosondes and one intact balloon. The radiosondes were initially tracked with the RadioSondy fixed RTL-SDR ground stations, then when in the vicinity of the landed balloon pinpointed and found with the MySondy hardware.

Tracking and Chasing Weather Balloons with TTGO LoRa board and Raspberry Pi. Fun and adventure

MySondy: Radiosonde Tracking Firmware for a TTGO ESP32 LORA Board

A radiosonde is a small sensor and radio package normally attached to a weather balloon. Meteorological agencies around the world typically launch two balloons a day from several locations to gather data for weather prediction. We have featured radiosondes several times on this blog as it is easy to use an RTL-SDR and computer to receive and decode their signals, which can used to hunt down the fallen sonde, or to receive the weather telemetry data.

Recently RTL-SDR.COM reader António submitted a link to an interesting project called "MySondy" which is created by Mirko Dalmonte (IZ4PNN). MySondy is custom firmware for TTGO Lora32 433 MHz boards which allows them to be turned into a radiosonde tracker. A TTGO is a cheap ~US$20 LoRa32 IoT dev board with an onboard WiFi + Bluetooth enabled ESP32 microcontroller and OLED display. Some of the slightly higher priced units come with a built in GPS receiver as well. With the custom firmware it is capable of receiving and decoding common radiosonde protocols such as RS41, M10, RS92 and DFM.

A TTGO ESP32 LoRa Board
A TTGO running MySondy firmware enclosed in a 3D Printed Case

There is also an Android App called MySondy Go and MySondy FINDER which connect to the TTGO via Bluetooth. This app plots the location of the radiosonde on a map, allowing you to easily follow and track down the balloon. You can also go to mysondy.altervista.org to see public MySondy stations. Clicking on a blinking dot will connect you with the MySondy server, allowing you to see tracked sondes.

MySondy Web Interface

The firmware and software appear to be fairly new, so there isn't much information about this that we could find just yet. Also we note that all manuals and information about the project is written in Italian, except for a French magazine article (pdf) that António sent us to upload.

We note that these TTGO ESP32 LoRa boards are quite interesting by themselves, with other custom firmware available to do things like create a Paxcounter which counts the number of mobile devices in an area via WiFi and Bluetooth signals, and the ability to use them as a GPS enabled Mesh network based text message radio.

Tracking and Recovering A NWS Weather Balloon & Radiosonde with an RTL-SDR

Over on YouTube OLHZN High Altitude Balloons has posted a very entertaining video showing how to use an RTL-SDR and small grid dish antenna to track and recover a fallen weather balloon and its radiosonde. OLHZN writes:

The US National Weather Service (#NWS) launches over 200 weather balloons everyday carrying an LMS-6 #radiosonde / rawinsonde made by Lockheed Martin to an altitude of over 100,000 ft. and you can track & follow the flights from home and even find the landing site and pick them up! This is a fun #DIY project that you can do yourself from home and I'll show you how to do it here along with some tips so you can go find yourself a weather balloon & radiosonde!

How to track & recover a NWS weather balloon & radiosonde 🎈🎈 DIY

Tracking Radiosondes with an RTL-SDR and Radiosonde_Auto_RX

A radiosonde is a small sensor and radio package normally attached to a weather balloon. Meteorological agencies around the world typically launch two balloons a day from several locations to gather data for weather prediction. With an RTL-SDR, appropriate antenna and decoding software it is possible to decode the telemetry signal and gather the weather data yourself. You can also use the GPS data to chase and collect the fallen radiosonde package. We have a tutorial on setting up a basic radiosonde decoder in Windows here.

However, if you want to set up a permanent radiosonde receive station it's possible to create an automatic system with a program called radiosonde_auto_rx. It works by performing an rtl_power scan over the radiosonde frequency range and looking for peaks that might indicate that a radiosonde is currently transmitting. If a peak is found it tries to decode it as a radiosonde, and if successful will begin uploading the weather data to an online aggregation site called sondehub.org. With this sort of system there is no need to know in advance the launch times and exact frequencies that your local meteorological agency uses, as often this information is not public.

Recently Mark Jessop and Michael Wheeler, the team behind radiosonde_auto_rx, also did a talk at the linux.conf.au conference. The talk explains radiosondes and demonstrates their software in action. They then go on to talk about chasing radiosondes, and re-purposing collected sondes.

[Also seen on Hackaday]

STM32 Development Boards (literally) Falling From The Sky

Aggregating Weather Balloon Data Online with a Custom Raspberry Pi Image

Thanks to a RTL-SDR.COM reader for submitting a tip about radiosondy.info, a weather balloon data aggregation website made by SQ6KXY. Weather balloons carry a sensor and transmitter payload called a radiosonde. These radiosondes transmit their data to a ground station via an RF signal, which is typically at around 400 - 406 MHz in most countries. With an RTL-SDR and decoder software (related tutorial) it is possible to receive and decode their weather data, and also often their GPS location data. The location data can be used to find and collect radiosondes once they reach the ground.

SQ6KXY has created a website called radiosondy.info which aims to aggregate and make weather balloon data received by contributors public. It is similar to sites like flightradar24 which aggregate ADS-B data from aircraft. The main page allows you to view radiosondes that are currently flying, and the archive of previous flights.

To make contributing to the site as simple as possible, SQ6KXY has created a custom image for the Raspberry Pi, which is automatically generated by the website for your particular user account, local radiosonde frequency requirements, and number of SDRs. They don't specifically mention it, but we assume that contributors are mostly using RTL-SDRs in their receivers. The custom image is available for generation after signing up.

Web tool to generate a custom Raspberry Pi Image for Radiosonde Tracking
Web tool to generate a custom Raspberry Pi Image for Radiosonde Tracking

Tutorial on using RS to Decode and Plot Radiosondes

A radiosonde is a small weather sensor package that is typically attached to a weather balloon. As it rises into the atmosphere it measures parameters such as temperature, humidity, pressure, GPS location etc, and transmits this data back down to a receiver base station using a radio signal.

Zilog's RS is a free open source radiosonde decoder for Linux and it supports a wide range of radiosonde protocols. Together with an RTL-SDR it is possible to receive radiosonde signals, and decode them using RS.

Over on his website, happysat has recently uploaded a tutorial that shows how to use RS with an RTL-SDR, CubicSDR or GQRX, and FoxtrotGPS, a GPS plotting program for visualizing the location of the radiosonde. The tutorial covers some tricky points like setting up audio piping in Linux, and getting the GPS data into a virtual COM port to use with FoxtrotGPS.

Alternatively, there are also Windows GUI based sonde decoders that can be used with the RTL-SDR such as SondeMonitor which costs 25 Euros, but also covers a wide range of sonde protocols, and RS41 Decoder which is a GUI for the RS41 sonde protocol only. If you are interested we have a tutorial on setting up radiosonde decoding in Windows with SondeMonitor available here.

Plotting the Sonde Location with an RTL-SDR, GQRX, RS and FoxtrotGPS.
Plotting the Sonde Location with an RTL-SDR, GQRX, RS and FoxtrotGPS.

RS41 RadioSonde Tracking Software

A radiosonde is a small weather sensor package that is typically attached to a weather balloon. As it rises into the atmosphere it measures parameters such as temperature, humidity, pressure, GPS location etc, and transmits this data back down to a receiver base station using a radio signal. The RS41 is one of the newer radiosonde modules sold by  radiosonde manufacturer Vaisala, and is currently one of the most popular radiosondes in use by meteorological agencies. The signal is typically found at around 400 MHz and can be received with an RTL-SDR and an antenna tuned for 400 MHz. We have a general tutorial on radiosonde decoding available here.

There are several software packages that can decode RS41 data, such as the multi-radiosonde decoder Windows program called SondeMonitor (25 euros), or the free Linux command line software called RS. Recently a new free Windows GUI based RS41 decoder has been released by IW1GIS. The software can display on Google maps the current location and previous path of the radiosonde, as well as it's weather data telemetry.

Main features are:

  • Directly decoding of GFSK signal received by the FM radio receiver (the use of a Software Defined Radio is recommended).
  • Capability to connect and command SDRSharp software by mean of Net Remote Control plugin.
  • Advanced frequencies scan and decode: RS41 Tracker is able to look for RS41 radiosonde signal in a given list of frequencies, starting the radiosonde decoding when a valid signal is detected.
  • Real time showing radiosonde position on google map (internet connection is required)
  • Map auto centered on radiosonde position
  • Map type selectable by user (road, satellite, hybrid, terrain).
  • Burst killer detailed information and launch time estimation.
  • Radiosonde RAW data save
  • Post processing of RS41 RAW data file
  • Tracking information (elevation, bearing, slant range)
  • Radiosonde track saved on kml file
  • Ghost track shown on map (loading from kml file)
  • Shortcut for google maps in browser
RS41 Tracker Software
RS41 Tracker Software

Reprogramming Vaisala RS-41 Radiosondes to Transmit APRS, RTTY, CW in the Ham or ISM Bands

Radiosondes are light weight sensor packages that are attached to weather balloons. They transmit live RF weather telemetry down to earth as they rise. With an RTL-SDR and appropriate antenna it can be possible to decode this telemetry. One related hobby that a few people enjoy is radiosonde chasing, which is tracking and collecting radiosondes once they have fallen back to the earth. Some people collect them as trophies, and others like to repurpose them. For example in this previous post we've seen how some radiosondes can be repurposed into L-band antennas for RTL-SDR's.

Another way to repurpose radiosondes has recently been submitted to us by regular contributor 'happysat' who wrote in and let us know that it is actually possible to reprogram the commonly used Vaisala RS-41 radiosondes into being able to transmit ham radio APRS, RTTY or CW mode signals in the ISM or ham bands. The initial hack was first performed by SQ5RWU, and then OM3BC who managed to create easier to use software that could reflash the radiosondes internal firmware via the serial port on the radiosonde. This hack could be useful for any ham requiring a cheap transmitter for their own high altitude balloon experiments.

Happysat ended up testing this software with some RS-41 radiosondes that he had, and managed to receive some generated signals with an RTL-SDR of his. Some photos that he's submitted are shown at the end of this post.

In addition to the above, happysat also wanted to mention his other radiosonde re-purposing project which was turning a DFM-06 and DFM-09 into a functional GPS unit that could be used for navigation when connected to a laptop, or to sync time on PCs.

Transmit APRS
PE2BZ's Modded RS41 with Solar Panels
RS41 Programmer
Transmit APRS PE2BZ's Modded RS41 with Solar Panels RS41 Programmer

Andreas Spiess Tracks Weather Balloons with a TTGO LoRa Board and RTL-SDR

Earlier in August we posted about radiosondy.info and the MySondy radiosonde receiver. Radiosondy.info is an internet service that aggregates radiosonde weather balloon data received and decoded by RTL-SDR users all over the world. MySondy is a cheap TTGO LoRa receiver that is modified with custom firmware and combined with a companion Android app in order to create a portable radiosonde receiver. A radiosonde is a small sensor and radio package normally attached to a weather balloon. Meteorological agencies around the world typically launch two balloons a day from several locations to gather data for weather prediction. With cheap hardware like an RTL-SDR and the right decoding software it is possible to receive weather and GPS data from the weather balloons launched in your area. 

Over on his popular YouTube channel, Andreas Spiess "the guy with the Swiss accent" has uploaded a video featuring the RadioSondy and the MySondy receiver projects. In the video Andreas first explains what a radiosonde is, and who launches them. He goes on to show the RadioSondy website and how to track balloons on it. He then shows the portable MySondy receiver for tracking radiosondes, before finally showing how to set up a permanent fixed ground station with RTL-SDR and Raspberry Pi for contributing to the RadioSondy aggregation website.

In amongst the demonstrations he also goes on several hunts for weather balloons that have landed near him, ultimately recovering two radiosondes and one intact balloon. The radiosondes were initially tracked with the RadioSondy fixed RTL-SDR ground stations, then when in the vicinity of the landed balloon pinpointed and found with the MySondy hardware.

Tracking and Chasing Weather Balloons with TTGO LoRa board and Raspberry Pi. Fun and adventure

MySondy: Radiosonde Tracking Firmware for a TTGO ESP32 LORA Board

A radiosonde is a small sensor and radio package normally attached to a weather balloon. Meteorological agencies around the world typically launch two balloons a day from several locations to gather data for weather prediction. We have featured radiosondes several times on this blog as it is easy to use an RTL-SDR and computer to receive and decode their signals, which can used to hunt down the fallen sonde, or to receive the weather telemetry data.

Recently RTL-SDR.COM reader António submitted a link to an interesting project called "MySondy" which is created by Mirko Dalmonte (IZ4PNN). MySondy is custom firmware for TTGO Lora32 433 MHz boards which allows them to be turned into a radiosonde tracker. A TTGO is a cheap ~US$20 LoRa32 IoT dev board with an onboard WiFi + Bluetooth enabled ESP32 microcontroller and OLED display. Some of the slightly higher priced units come with a built in GPS receiver as well. With the custom firmware it is capable of receiving and decoding common radiosonde protocols such as RS41, M10, RS92 and DFM.

A TTGO ESP32 LoRa Board
A TTGO running MySondy firmware enclosed in a 3D Printed Case

There is also an Android App called MySondy Go and MySondy FINDER which connect to the TTGO via Bluetooth. This app plots the location of the radiosonde on a map, allowing you to easily follow and track down the balloon. You can also go to mysondy.altervista.org to see public MySondy stations. Clicking on a blinking dot will connect you with the MySondy server, allowing you to see tracked sondes.

MySondy Web Interface

The firmware and software appear to be fairly new, so there isn't much information about this that we could find just yet. Also we note that all manuals and information about the project is written in Italian, except for a French magazine article (pdf) that António sent us to upload.

We note that these TTGO ESP32 LoRa boards are quite interesting by themselves, with other custom firmware available to do things like create a Paxcounter which counts the number of mobile devices in an area via WiFi and Bluetooth signals, and the ability to use them as a GPS enabled Mesh network based text message radio.

Tracking and Recovering A NWS Weather Balloon & Radiosonde with an RTL-SDR

Over on YouTube OLHZN High Altitude Balloons has posted a very entertaining video showing how to use an RTL-SDR and small grid dish antenna to track and recover a fallen weather balloon and its radiosonde. OLHZN writes:

The US National Weather Service (#NWS) launches over 200 weather balloons everyday carrying an LMS-6 #radiosonde / rawinsonde made by Lockheed Martin to an altitude of over 100,000 ft. and you can track & follow the flights from home and even find the landing site and pick them up! This is a fun #DIY project that you can do yourself from home and I'll show you how to do it here along with some tips so you can go find yourself a weather balloon & radiosonde!

How to track & recover a NWS weather balloon & radiosonde 🎈🎈 DIY

Tracking Radiosondes with an RTL-SDR and Radiosonde_Auto_RX

A radiosonde is a small sensor and radio package normally attached to a weather balloon. Meteorological agencies around the world typically launch two balloons a day from several locations to gather data for weather prediction. With an RTL-SDR, appropriate antenna and decoding software it is possible to decode the telemetry signal and gather the weather data yourself. You can also use the GPS data to chase and collect the fallen radiosonde package. We have a tutorial on setting up a basic radiosonde decoder in Windows here.

However, if you want to set up a permanent radiosonde receive station it's possible to create an automatic system with a program called radiosonde_auto_rx. It works by performing an rtl_power scan over the radiosonde frequency range and looking for peaks that might indicate that a radiosonde is currently transmitting. If a peak is found it tries to decode it as a radiosonde, and if successful will begin uploading the weather data to an online aggregation site called sondehub.org. With this sort of system there is no need to know in advance the launch times and exact frequencies that your local meteorological agency uses, as often this information is not public.

Recently Mark Jessop and Michael Wheeler, the team behind radiosonde_auto_rx, also did a talk at the linux.conf.au conference. The talk explains radiosondes and demonstrates their software in action. They then go on to talk about chasing radiosondes, and re-purposing collected sondes.

[Also seen on Hackaday]

STM32 Development Boards (literally) Falling From The Sky

Aggregating Weather Balloon Data Online with a Custom Raspberry Pi Image

Thanks to a RTL-SDR.COM reader for submitting a tip about radiosondy.info, a weather balloon data aggregation website made by SQ6KXY. Weather balloons carry a sensor and transmitter payload called a radiosonde. These radiosondes transmit their data to a ground station via an RF signal, which is typically at around 400 - 406 MHz in most countries. With an RTL-SDR and decoder software (related tutorial) it is possible to receive and decode their weather data, and also often their GPS location data. The location data can be used to find and collect radiosondes once they reach the ground.

SQ6KXY has created a website called radiosondy.info which aims to aggregate and make weather balloon data received by contributors public. It is similar to sites like flightradar24 which aggregate ADS-B data from aircraft. The main page allows you to view radiosondes that are currently flying, and the archive of previous flights.

To make contributing to the site as simple as possible, SQ6KXY has created a custom image for the Raspberry Pi, which is automatically generated by the website for your particular user account, local radiosonde frequency requirements, and number of SDRs. They don't specifically mention it, but we assume that contributors are mostly using RTL-SDRs in their receivers. The custom image is available for generation after signing up.

Web tool to generate a custom Raspberry Pi Image for Radiosonde Tracking
Web tool to generate a custom Raspberry Pi Image for Radiosonde Tracking

Tutorial on using RS to Decode and Plot Radiosondes

A radiosonde is a small weather sensor package that is typically attached to a weather balloon. As it rises into the atmosphere it measures parameters such as temperature, humidity, pressure, GPS location etc, and transmits this data back down to a receiver base station using a radio signal.

Zilog's RS is a free open source radiosonde decoder for Linux and it supports a wide range of radiosonde protocols. Together with an RTL-SDR it is possible to receive radiosonde signals, and decode them using RS.

Over on his website, happysat has recently uploaded a tutorial that shows how to use RS with an RTL-SDR, CubicSDR or GQRX, and FoxtrotGPS, a GPS plotting program for visualizing the location of the radiosonde. The tutorial covers some tricky points like setting up audio piping in Linux, and getting the GPS data into a virtual COM port to use with FoxtrotGPS.

Alternatively, there are also Windows GUI based sonde decoders that can be used with the RTL-SDR such as SondeMonitor which costs 25 Euros, but also covers a wide range of sonde protocols, and RS41 Decoder which is a GUI for the RS41 sonde protocol only. If you are interested we have a tutorial on setting up radiosonde decoding in Windows with SondeMonitor available here.

Plotting the Sonde Location with an RTL-SDR, GQRX, RS and FoxtrotGPS.
Plotting the Sonde Location with an RTL-SDR, GQRX, RS and FoxtrotGPS.

RS41 RadioSonde Tracking Software

A radiosonde is a small weather sensor package that is typically attached to a weather balloon. As it rises into the atmosphere it measures parameters such as temperature, humidity, pressure, GPS location etc, and transmits this data back down to a receiver base station using a radio signal. The RS41 is one of the newer radiosonde modules sold by  radiosonde manufacturer Vaisala, and is currently one of the most popular radiosondes in use by meteorological agencies. The signal is typically found at around 400 MHz and can be received with an RTL-SDR and an antenna tuned for 400 MHz. We have a general tutorial on radiosonde decoding available here.

There are several software packages that can decode RS41 data, such as the multi-radiosonde decoder Windows program called SondeMonitor (25 euros), or the free Linux command line software called RS. Recently a new free Windows GUI based RS41 decoder has been released by IW1GIS. The software can display on Google maps the current location and previous path of the radiosonde, as well as it's weather data telemetry.

Main features are:

  • Directly decoding of GFSK signal received by the FM radio receiver (the use of a Software Defined Radio is recommended).
  • Capability to connect and command SDRSharp software by mean of Net Remote Control plugin.
  • Advanced frequencies scan and decode: RS41 Tracker is able to look for RS41 radiosonde signal in a given list of frequencies, starting the radiosonde decoding when a valid signal is detected.
  • Real time showing radiosonde position on google map (internet connection is required)
  • Map auto centered on radiosonde position
  • Map type selectable by user (road, satellite, hybrid, terrain).
  • Burst killer detailed information and launch time estimation.
  • Radiosonde RAW data save
  • Post processing of RS41 RAW data file
  • Tracking information (elevation, bearing, slant range)
  • Radiosonde track saved on kml file
  • Ghost track shown on map (loading from kml file)
  • Shortcut for google maps in browser
RS41 Tracker Software
RS41 Tracker Software

Reprogramming Vaisala RS-41 Radiosondes to Transmit APRS, RTTY, CW in the Ham or ISM Bands

Radiosondes are light weight sensor packages that are attached to weather balloons. They transmit live RF weather telemetry down to earth as they rise. With an RTL-SDR and appropriate antenna it can be possible to decode this telemetry. One related hobby that a few people enjoy is radiosonde chasing, which is tracking and collecting radiosondes once they have fallen back to the earth. Some people collect them as trophies, and others like to repurpose them. For example in this previous post we've seen how some radiosondes can be repurposed into L-band antennas for RTL-SDR's.

Another way to repurpose radiosondes has recently been submitted to us by regular contributor 'happysat' who wrote in and let us know that it is actually possible to reprogram the commonly used Vaisala RS-41 radiosondes into being able to transmit ham radio APRS, RTTY or CW mode signals in the ISM or ham bands. The initial hack was first performed by SQ5RWU, and then OM3BC who managed to create easier to use software that could reflash the radiosondes internal firmware via the serial port on the radiosonde. This hack could be useful for any ham requiring a cheap transmitter for their own high altitude balloon experiments.

Happysat ended up testing this software with some RS-41 radiosondes that he had, and managed to receive some generated signals with an RTL-SDR of his. Some photos that he's submitted are shown at the end of this post.

In addition to the above, happysat also wanted to mention his other radiosonde re-purposing project which was turning a DFM-06 and DFM-09 into a functional GPS unit that could be used for navigation when connected to a laptop, or to sync time on PCs.

Transmit APRS
PE2BZ's Modded RS41 with Solar Panels
RS41 Programmer
Transmit APRS PE2BZ's Modded RS41 with Solar Panels RS41 Programmer