Category: Airband

Hak5: Mobile SDR Apps

On this episode of Hak5, a popular YouTube technology channel, Shannon shows two Android based ADS-B RTL-SDR apps that we have mentioned on this blog previously. One is “ADS-B on USB SDR RTL” and the other is Avare ADS-B. Both are ADS-B apps that will display real time airplane positions on a map.

To run these apps you need a RTL-SDR dongle, a USB OTG cable and an Android phone.

Cellular Testing Tools and Mobile SDR Apps, Hak5 1708

Visualizing ADS-B Data in 3D using MATLAB

Over on Reddit user JorgeGT has posted an animated 3D visualization of his local ADS-B air traffic data using a MATLAB script he wrote. The script collects data from a dump1090 server. If you have a copy of MATLAB, his code can be downloaded from Github here. To run the code JorgeGT writes that you’ll need to do the following.

  • Get dump1090 running on an accessible server: http://url:8080.
  • Get countries/states/provinces SHPs from Natural Earth if you want them to show them and store them in a folder called 10m_cultural.
  • Have a look at my MATLAB script and try to run it.
MATLAB Visualization of ADS-B Data
MATLAB Visualization of ADS-B Air Traffic Data

ADS-B Front-End with LNA and SAW Filter for Improved Reception

Japanese blogger and RTL-SDR experimenter ttreftech has had an ADS-B front end kit (In Japanese, use Google Translate) consisting of a low noise amplifier (LNA) and SAW filter available for sale in Japan for a few months now. The LNA helps to push weak signals through the coax feed line and the SAW filter is a bandpass filter that helps to remove interference outside of the 1090 MHz ADS-B region. If you are interested in building your own version, ttrftech has also posted a schematic. Another recent post about the front-end can be found here.

Another Japanese blogger, “pup” has posted about his results with the ADS-B front end kit (Also in Japanese, use Google Translate). His results show that the front end does significantly improve ADS-B reception. The image below shows an ADS-B signal with the front end turned off (top) and with it turned on (bottom). Pup has also posted a video showing the kit and its performance on HDSDR.

Japanese ADS-B Front End
Japanese ADS-B Front End
ADS-B AMPキットの実験

Using dump1090 in Windows

Dump1090 is a command line based ADS-B decoder for the RTL-SDR. It is considered by many to be the best ADS-B decoder for the RTL-SDR available at the moment. Dump1090 is most commonly used in Linux but over on his blog, SonicGoose has written a tutorial that shows how to use dump1090 on Windows with the popular PlanePlotter software. He also shows how to use ModeSMixer2, which is another command line utility that is used to combine data from multiple ADS-B decoders and then rebroadcast the combined feed.

SonicGoose writes that the reason that many PlanePlotter users are moving away from the simpler GUI based RTL1090 ADS-B decoder is because dump1090 provides better raw data to use for multilateration. Multilateration is a technique supported by PlanePlotter which used data shared from multiple receivers to determine the location of an aircraft, even if that aircraft is not transmitting location information.

Dump1090 Running on Windows
Dump1090 Running on Windows

New RTL-SDR ADS-B App for Android

Over on the Google Play store there is a new (released July 2014) RTL-SDR ADS-B Android app available for purchase called “ADS-B Receiver”. This app allows you to with the aid of an RTL-SDR and USB OTG cable, display live aircraft ADS-B data on your Android phone. This app can also be used to display the live ADS-B data in another app called “Avare”, which provides offline FAA aviation charts and other pilot tools on a Android phone.

The app can be downloaded as a trial version with a fixed limit on the number of packets allowed to be received, or the pro version for around $1.99 USD with no limits.

Previously on this blog we mentioned another similar RTL-SDR Android ADS-B app called “ADS-B on USB SDR RTL“.

ADS-B Receiver on Android
ADS-B Receiver on Android

Monitoring Military Aircraft with an RTL-SDR Part 2

Last month we posted about monitoring and logging military ADS-B data on milaircomms.com. It turns out that there is another service at www.live-military-mode-s.eu that also does military ADS-B logging. One user of live-military-mode-s.eu has recently uploaded a tutorial showing how to use a RTL-SDR to contribute to their logs. By contributing to their service you get a username and password to access members only sections of their site.

Contribution involves running an ADS-B decoder like RTL1090, sending the decoded data to Virtual Radar Server (VRS) and then using VRS to rebroadcast the data to their Mode-S Logger software.

Some Military ADS-B Logs
Some Military ADS-B Logs

Monitoring Military Aircraft with an RTL-SDR

The military air communications monitoring enthusiasts over at milaircomms.com have been using a system involving RTL-SDRs to monitor military air traffic through ADS-B. While military aircraft generally do not transmit GPS position information like commercial aircraft do, they are still able to record live information such as the aircraft’s hex code, registration number, aircraft type, the base station location and a graph of recorded altitudes. They also log all this data showing where military aircraft have been spotted over time.

To receive this information they so far have a network of about 30 volunteers running RTL-SDR based ground stations that use their custom MilAirComms1090 software. If you want to contribute, the software is available for Windows and for Linux/Raspberry Pi.

Example of a US Coast Guard C-130 Aircraft doing Touch/Goes and Sighting History
Example Logs of a US Coast Guard C-130 Aircraft doing Touch/Goes and its Sighting History

FlightAware Introduces PiAware for use with RTL-SDR and dump1090 on a Raspberry Pi

FlightAware is an online service providing real time flight tracking. The flights are primarily tracked by volunteers who run ADS-B decoding hardware which is networked through the internet to the FlightAware servers.

Now FlightAware have written in to RTL-SDR.com to let us know about their new PiAware software which enables a Raspberry Pi running dump1090 to contribute data to the FlightAware network. Dump1090 is a popular RTL-SDR compatible ADS-B decoder program for Linux systems.

A major perk for running their software and contributing data is that FlightAware will buy you a licensed copy of PlanePlotter.

The press release provided is quoted below.

If you are running an inexpensive Raspberry Pi ADS-B receiver with dump1090 then you can install the PiAware Package from FlightAware to freely view nearby flight traffic and transmit this data to FlightAware’s tracking network.  Most aircraft within Europe by 2017 and USA by 2020 will be required to have ADS-B transmitters onboard.
FlightAware’s user-hosted worldwide ADS-B receiver network tracks about 90,000 unique aircraft per day and feeds this live data into the FlightAware website in combination with other public/private flight tracking data sources.  FlightAware has over 500 user-hosted ADS-B sites online across 60 countries, with top contributors tracking over 10,000 aircraft per day.  To see how ADS-B data is put to use, check out the FlightAware Live Map.
The PiAware installation process takes only a few minutes.  If you don’t have PlanePlotter, you can download it and then send FlightAware your installation’s serial number and we’ll buy you a license.  FlightAware will also give users a free Enterprise Account ($90/month value) in return for installing PiAware.
flightaware
FlightAware Real Time Map Example

Receiving and Decoding FLARM (Tracking Gliders, Helicopters etc) using the RTL-SDR

Over on our Facebook page, a user has let us know about the Open Glider Network project which makes use of the RTL-SDR dongle to decode FLARM. FLARM is a low cost and low power consumption ADS-B alternative which is often used by small aircraft such as gliders and helicopters for collision avoidance. With the right antenna, receiver and decoder any aircraft transmitting a FLARM signal could potentially be tracked on a map.

FLARM signals are transmitted at 868 MHz and are effectively weaker by 100-1000 times compared to standard ADS-B signals. The project recommends use of a high gain collinear antenna for receiving the weak FLARM signals. The open glider network project wiki contains information on how to set up their Linux based FLARM decoder that relies on the RTL-SDR for various embedded devices.

Once the software is up and running, the received and decoded FLARM packets can be seen on http://cunimb.fr/live/ as real time glider positions (also at http://cunimb.fr/live/3D/ in a 3D Google Earth).

FLARM Gliders shown in real time on a map
FLARM Gliders received with the RTL-SDR shown in real time on a map

Hak5: Using a Solar Powered Embedded Device with an RTL-SDR to Track Aircraft Remotely

Over on YouTube Hak5, a popular electronics enthusiast channel has uploaded a video showing their project which involves creating a remote solar powered ADS-B receiver with the RTL-SDR. They used a WiFi Pineapple which is a mini Linux based embedded computer as a remote PC and sealed it in a weather tight briefcase with a lead acid battery and solar panel. They also used a high gain directional WiFi antenna on both the transmitting and receiving ends. With this setup the WiFi Pineapple is capable of running indefinitely transmitting ADS-B data using just the solar panel and battery.

They took their setup to the top of a hill near to their office and pointed the transmitting WiFi antenna towards their offices. Then back in the comfort of their offices they were able to remotely connect to the WiFi Pineapple and start a dump1090 webserver and connect to it using Virtual Radar Server.

Solar WiFi Pineapple Briefcase, Aircraft Tracking with High Gain Point-to-Point, Hak5 1614