RFNM Updates: Motherboard Prototypes Manufactured

Back in April we posted about the RFNM, an upcoming software defined radio project which will have eight 12-bit ADCs, up to 612 MHz real time bandwidth, and two DACs for transmitting with up to 153 MHz bandwidth. The standard board will support tuning from 600 - 7200 MHz, with tuning expanded down to 10 MHz via an RFFC2071A mixer.

Recently they've updated their blog and show that they have successfully manufactured the first prototype of the RFNM motherboard. The motherboard is the board containing the LA9310 RF and computing chips, and then they intend on having various daughterboards for tuners that will expand the tuning range and performance.

They also updated their pricing, noting that they have upgraded a few specifications. The motherboard is set to be priced at $299. It will be available for preorder in August, with an expected October delivery date.

The RFNM Motherboard

TechMinds: Detecting Bats with an Ultrasonic Sensor and Software Defined Radio

Back in 2018 we posted about someone who had combined an ultrasonic piezo speaker and an SDRPlay RSP1A in order to create a device that can detect the ultrasonic sonar sound from bats.

Recently on YouTube Matt from the TechMinds YouTube channel was able to create a similar system using a MEMS microphone from Knowles which can receive audio in the 100 Hz ~ 80 kHz range. He connects the microphone to a 3.3V supply and connects the output of the microphone to his SDRplay RSPDx.

The system was then able to successfully hear the sound of bat sonar at his home location in the UK.

Ultrasonic BAT Detector Using Software Defined Radio

Receiving the STEREO-A Solar Orbiting Satellite with a 66cm Dish

STEREO-A is a satellite launched in 2006 which is orbiting the sun and used for making solar observations. Usually it is so far away that massive deep space satellite dish's are required to receive this satellite. However for the first time since it's launch, STEREO-A's orbit is taking it close enough to Earth for small home satellite ground stations to be able to receive the data and download some images of the sun. 

Over on his Blog Scott Tilley has written up an article showing how it is now (temporarily) possible to receive and decode STEREO-A with a small 66cm dish. The satellite will be closest to Earth on August 17 2023, however Scott notes that since mid June the signal has already been dramatically increasing.

Scott's blog post explains the orbit, how the satellite transmits at 8.443.579 GHz, and shows his feed and hardware setup which involves a few filters, LNAs, GPS reference clock, a mixer and an Ettus B200 SDR. He also notes how he uses a modified motorized telescope mount to automatically track the satellite as it moves through space.

The rest of Scott's post explains how to use the "CCSDS Turbo R6 K8920" Decoder in SatDump to decode the signal and recover images, noting that some tuning of parameters was required and that because of the slow data rate it can take hours to get even one megabyte of data. He goes on to acknowledge everyone who figured out how to decode the image and telemetry data from the satellite, some observations on the STEREO-A beacon and finally some amazing images and animations he's received.

A weak signal from STEREO-A received back in mid June 2023
Image of the sun from STEREO-A

SDRSharp 1915 Released: RTL-SDR Crashes Fixed

Thank you to SDR# author Youssef for updating SDR# (SDRSharp) and fixing a recent bug that was causing RTL-SDR units to crash whenever the frequency was changed. We are putting this post out to inform everyone who was having this issue to please update their SDRSharp version to 1915 which can be downloaded from airspy.com/download. Our guide at www.rtl-sdr.com/QSG can be used to walk you through the installation procedure for RTL-SDR dongles in SDR#.

The new update brings the RTL-SDR control menu down to the sidebar making it much easier to control the gain and sample rate settings. Other recent changes have also brought improvements to the RDS decoder which will be useful for DXers.

Please remember to show your appreciation to Airspy for allowing RTL-SDR users on their platform by checking out their range of higher end softwire defined radio products at airspy.com.

SDR# 1915
SDR# 1915

Receiving Images from the US DoD Coriolis Satellite

Over on dereksgc's YouTube channel another recent video from his satellite decoding series shows how to download images from the Coriolis satellite, a US Department of Defense satellite launched in 2003, that is among other uses designed to measure wind speed and direction from space using a radiometer.

The entire history of an orbit is only downlinked in the S-band when over an official ground station, however it also has a 'tactical' downlink for live data that the US Navy uses. As the data is unencrypted, with a satellite dish, 2.2 GHz feed, LNA and a software defined radio like the HackRF, anyone can receive the data.

In his video dereksgc explains the satellite, shows his hardware, and demonstrates reception. He then passes the recording into SatDump which results in the images. The images themselves are nothing interesting to look at, as they are produced by a sensor designed to measure wind. But dereksgc shows how multiple images can be composited into something a little more interesting.

Receiving Unintentional Voice Transmissions from GPS Satellites

Over on dereksgc's YouTube channel we've discovered a few more recent interesting videos from his satellite decoding series that people may be interested in. One from two weeks ago shows how it's possible to receive voice transmissions on navigation satellites such as GPS.

Many navigational and meteorological satellites carry a search and rescue (SAR) repeater which is intended to receive UHF emergency locator beacons and rebroadcast them in the L-band or higher. However the repeaters appear to be picking up all sorts of other signals from the ground, including voice transmissions. Dereksgc notes that the theory is that there are some land based communications systems in some countries that are sharing frequencies that emergency locator beacons use, or that malicious pirates may be actively using these SAR repeaters for their own communications.

Dereksgc shows examples of retransmitted signals on the Beidou, GLONASS and Elektro-L satellite downlinks at 1.5442 GHz and at 2.226 MHz for the GPS satellites. He also shows what sort of satellite dish and feed setup you need. In the video he uses a HackRF as the SDR, but you could also use an RTL-SDR for the satellites that transmit at 1.5442 GHz.

Receiving voice transmissions from GPS satellites || Satellite reception pt.10

Video on Meteor M2-3 LRPT, HRPT and Telemetry Reception

Over on YouTube dereksgc has another video on Meteor M2-3 reception. In the video Derek goes over the history of Meteor M launches and then goes on to test reception of the 3.4 GHz telemetry signal which he recorded early after the satellites launch.

The next day he sets up 1.7 GHz HRPT reception using a hand tracked satellite dish and is successful as receiving it. He then goes on to test 137 MHz LRPT reception with a V-dipole antenna and RTL-SDR and is also successful. Finally he decodes the recordings using SatDump and is able to get some great images.

Derek also notes that there might be a problem with the LRPT antenna which could explain some reports of poor reception at some elevations of the satellite. He notes that it seems likely that the QFH antenna extension process on the satellite didn't extend fully or at all.

André shares his QO-100 Ground Station and HF/VHF/UHF Station

Thank you to RTL-SDR.com reader André for submitting and sharing with us his QO-100 ground station setup. The setup also includes antennas and equipment to receive HF and VHF/UHF. His setup can serve as an example of a well set up permanent installation.

André's set up consists of a 1.8 meter prime focus dish, Raspberry Pi 4, GPIO connected relay, Airspy R2, Ham-it-up upconverter, coaxial relay for switching between Mini-Whip and Discone Antenna, and FM bandstop filter and a power terminal rail block. The Airspy R2 is used for HF/UHF/UHF reception and the antennas and upconverter are all controlled via a web connected relay system. All equipment is enclosed in an outdoor rated box, and André notes everything has been working well from temperatures range from -10C to 35C.

Inside the satellite dish feed is housed an Adalm Pluto SDR, and a wideband LNA and a USB to LAN converter with power over Ethernet. A small log periodic Yagi serves as the feed. In order to work the wideband DATV band on Qo-100, André' swaps out this feed for a custom feed and brings the PlutoSDR indoors where it is connected to a 120W Spectran Amplifier and modulator.

For the full writeup of his setup, we have uploaded André's document here.

André's ground station setup for QO-100 and HF/VHF/UHF