The company ebcTech who makes AIS Share for Android has recently come out with a new app which is an Android App version of Dump1090. Dump1090 is a popular command line based ADS-B decoder for RTL-SDR dongles which allows you to receive and plot the locations of nearby aircraft on a map.
The app directly accesses the RTL-SDR via a USB OTG connection and provides a list of aircraft with planespotters.net image lookup, and a Google map display. The app is free however there is a message limit on received aircraft which can be unlocked via a low cost in-app purchase.
The author also wrote in and wanted to make a note about a special feature "In the app you can add Airport layers – This consist now 4480 Airports – most of them with corresponding homepage address / or Wikipedia link."
Thank you to Egor for writing in a sharing his work on modifying dump1090 in order to support the HackRF on Windows. dump1090 is software that is often used with RTL-SDR dongles for decoding ADS-B data for aircraft tracking. He writes:
Some time ago I was looking for dump1090 version with HackRF support that could work on Windows. But I have not found such version.
So I forked Malcolm Robb's version of dump1090 that could be built on Windows around 7 years ago. :) I've updated it and have added HackRF support from Ilker Temir's fork.
Now my version is available here https://github.com/esuldin/dump1090. The main difference from the others that it supports HackRF One device on Windows.
BaseStation is an old ADS-B visualization program that was originally made to be used with BaseStation SBS receivers which were commonly used for ADS-B reception before the discovery of the RTL-SDR. Many old time ADS-B enthusiasts may already be set up with this software and would like to continue using it, however may have a dead SBS unit, or simply want to use a more modern receiver.
In his latest video Tech Minds demonstrates how you can use the ModeSMixer software to translate ADS-B data coming from an RTL-SDR compatible program like dump1090 into the BaseStation data format.
How To Use BaseStation With ANY ADSB Hardware - Software ModeSMixer
Tech Minds has also released an earlier video demonstrating the AirNav RadarBox XRange2. This appears to be essentially an ADS-B optimized RTL-SDR and Raspberry Pi in a plastic box, with custom SD Card set up and ready to go. At a price of US$299 it is quite an expensive premium to pay, but it may be of use to aviation enthusiasts who have poor technical computer skills that still want to set up a home aircraft tracking station.
AirNav is the company behind RadarBox24.com, a flight data aggregation service similar to sites like FlightAware.com and FlightRadar24.com. RTL-SDR hardware is typically used to receive ADS-B, and like other providers AirNav have their own custom ADS-B optimized RTL-SDR unit. In addition they sell RTL-SDR's optimized for UAT 978 MHz and the VHF Airband. They also have a range of ADS-B/UAT/VHF airband outdoor antennas as well as filters.
Currently their products are discounted by 20% for Black Friday/Cyber Monday sales. The discount is available on Amazon, as well as directly from their store with coupon GET20.
At this years ICNP 2020 IEEE conference a paper titled "Real-World ADS-B signal recognition based on Radio Frequency Fingerprinting" (pdf file) was presented by researchers from Harbin Engineering University in China. The idea presented in the paper is to use RF "fingerprinting" techniques to uniquely identify and confirm that the ADS-B signal originates from the correct aircraft source.
RF fingerprinting works on the premise that every transmitter has small manufacturing variances that result in slightly different signals be transmitted, resulting in a unique "fingerprint" that can be traced to a particular transmitter. The idea here is to use these fingerprints to ensure that a known aircraft is indeed transmitting an ADS-B signal and the signal is not being transmitted from a fake spoofer. ADS-B is completely unencrypted and not authenticated, so spoofing of ADS-B signals may be a real security threat.
In the teams research they use an RTL-SDR to collect ADS-B signals from five different aircraft. They then use that data to create "Contour Stellar Images" and train a deep learning neural network which after training accurately identifies which aircraft a signal comes from.
Over on his blog Ian Renton has posted about his dual plane and ship tracker project that he's titled "Plane/Sailing". The project consists of several elements including one FlightAware Pro Stick and Pimoroni ADS-B antenna for the aircraft tracking, and an RTL-SDR Blog V3 dongle and Diamond X-50 AIS antenna for the ship tracker.
Ian runs each dongle on a seperate Raspberry Pi. For aircraft the dump1090 software is used to decode the data, and it passes that data to multiple aggregator feeders such as FlightAware, FlightRadar24, ADS-B Exchange and OpenSky. For ships he uses rtl_ais which feeds into AIS Dispatcher which in turn feeds multiple marine aggregators such as Marine Traffic, VesselFinder, AIS Hub, Pocket Mariner and Ship Finder.
His system also feeds a personally hosted web front end based on his umid1090 software. umid1090 is a replacement for dump1090's web interface, the main difference being that the map is presented using military symbology. For the "Plane/Sailing" project he also extended umid1090 to be able to read the AIS ship position data from AIS Dispatcher's KML output file, and created a clean dark interface. The result is a slick looking map displaying both the tracked aircraft and ships. Ian's web interface for his system is public, and can be viewed at planesailing.ianrenton.com.
The Plane/Sailing Web Interface (Based of UMID1090)
In the past we've posted about the QIRX software a few times as it is an RTL-SDR compatible program that has a focus on DAB+ decoding. However, recently QIRX author Clem wrote in to let us know about version 3 beta, which is now a multi-mode receiver supporting modes such as ADS-B, AM, NBFM, WFM, SSB as well as DAB+ as it did in previous versions. It also now support ADS-B plane mapping, and can run multiple RTL-SDRs at once. We note that this version is not yet available for public download, however you can get the beta by contacting the author (details below). Clem writes:
In short, there are two main new features:
Multi-Receiver: More than one hardware RX can be connected, all I/Q data are fed via TCP/IP, local or remote. The configuration is read from the config file, per default prepared for three receivers.
As before, TCP/IP drivers for RTL-SDR dongles, the RSPs (RSPDuo single-channel), and Airspy. All binaries are part of the installer.
Although the software is "general purpose", particular emphasis has been given to serve aviation enthusiasts.
ADS-B: Aircrafts are displayed on the map. Information for about 450.000 aircrafts comes from an open database kindly provided by Opensky-network.org, updateable by the user from within the software, similar like the DAB database. The ADS-B decoder is a C# port of the well-known dump1090 software, with enhancements to decode aircraft ground movements.
The displayed aircrafts are those within the range of the attached receiver. In contrast to some other applications, it might be noted that the software is capable to decode the movements of the aircrafts not only when airborne, but also on the ground, of course when in range. This might be interesting for plane spotters, perhaps in the vicinity of an airport.
The AM decoder provides special features when tuned to the airband range and - as should be standard nowadays - 8.33kHz channel separation has been selected. In contrast to older times, in airband communications no longer frequencies in MHz are communicated, but channels. The software (in live mode, not visible in the above picture taken from a file replay) provides an own airband channel selector, directly accepting channel numbers as spoken by ATC controllers. This is paired with the indication of channels in the spectrum, together with the corresponding frequency. With 8.33kHz channel separation, cheap dongles should be calibrated to receive the correct frequency, e.g. with QIRX's DAB decoder (where DAB is available).
Readers interested to give this version a try might send an email to [email protected] and they will receive the current beta version (Win10 .msi installer). As it might not yet have its final stability, it is not yet provided for download. Of course all beta users are requested to give some feedback.
QIRX V3 ADS-B Interface: Showing activity over Zurich Airport
Clem has also provided a YouTube video demonstration 20 minutes of ADS-B and airband voice activity over Zurich airport via the new multi-receiver and ADS-B mapping features in QIRX.
The Organized Crime and Corruption Reporting Project (OCCRP) have recently run a story about how they have used ADS-B aircraft data to uncover the role that US civilian aircraft contractors are playing in the East African "kill chain". The investigation began over concerns that while civilian contractors do not pull the trigger, they may be becoming too involved in the process of determining exactly who will be killed in combat via data collection and analysis through their high tech surveillance aircraft. In the article they also note how many of these civilian contractors hide their true owners behind a chain of multiple LLC companies, thus reducing any accountability for their actions.
OCCRP also supports the Dictator Alert project which we have posted about in the past. In a related article titled "Mapping the Secret Skies: Lessons Learned From Flight Data" Emmanuel Freudenthal who helped setup the Dictator Alert project discusses how censorship free ADS-B tracking is helping journalists uncover new stories. In the article he notes how he uses uncensored ADS-B data together with the leaked Paradise Papers to reveal the true owners of aircraft hidden behind multiple LLC and shell companies. Regarding the "kill chain" article Emmanuel's post also explains how the story came to be:
An upcoming OCCRP story focuses on U.S. surveillance flights over Somalia. The U.S. military operates out of a small air base at Manda Bay just over the border in Kenya. We had a tip that it would be worth checking on planes in the area, so we set up an antenna nearby, which fed us information about planes taking off and landing from the base.
We eventually had to take down the antenna due to security concerns. But we managed to collect data on a number of planes that had been purchased by obscure shell companies and modified with advanced surveillance equipment before being sent to Kenya.
Why is this article posted on this blog? ADS-B data from aircraft is most often received these days via RTL-SDR dongles due to their low cost, so it is interesting to see to what extent cheap SDRs may be affecting the world via this type of reporting.
We note that ADS-B Exchange is the only censorship free ADS-B data aggregator available. All other online flight trackers censor flights from the government as well as from some private jets that may be owned by high profile company directors or in some cases dictators. The argument for censorship is that ADS-B data collection may be made illegal otherwise.
In a previous post we also discussed how censorship free ADS-B data from ADS-B Exchange revealed how military Blackhawk helicopters and Predator drones were used for surveillance during the early Black Lives Matter protests.