Tagged: security

Rolling-Pwn: Wireless rolling code security completely defeated on all Honda vehicles since 2012

Back in May we posted about CVE-2022-27254 where university student researchers discovered that the wireless locking system on several Honda vehicles was vulnerable to simple RF replay attacks. A replay attack is when a wireless signal such as a door unlock signal is recorded, and then played back at a later time with a device like a HackRF SDR. This vulnerability only affected 2016-2020 Honda Civic vehicles which came without rolling code security.

Recently a new vulnerability discovered by @kevin2600 that affects ALL Honda vehicles currently on the market (2012-2022) has been disclosed. The vulnerability is dubbed 'Rolling-PWN' (CVE-2022-27254) and as the name suggests, details a method for defeating the rolling code security that exists on most Honda vehicles. Rolling code security is designed to prevent simple replay attacks, and is implemented on most modern vehicles with wireless keyfobs. However @kevin2600 notes the following vulnerability that has been discovered:

A rolling code system in keyless entry systems is to prevent replay attack. After each keyfob button pressed the rolling codes synchronizing counter is increased. However, the vehicle receiver will accept a sliding window of codes, to avoid accidental key pressed by design. By sending the commands in a consecutive sequence to the Honda vehicles, it will be resynchronizing the counter. Once counter resynced, commands from the previous cycle of the counter worked again. Therefore, those commands can be used later to unlock the car at will.

The vulnerability has been tested on various Honda vehicles with HackRF SDRs, and this seems to indicate that all Honda vehicles since 2012 are vulnerable.

Although no tools have been released, the vulnerability is simple enough and we've already seen people replicate results.

The story of Rolling-Pwn has already been covered by magazines and news organizations such as TheDrive, Vice, NYPost, and FoxLA.

It should be noted that when the previous replay attack vulnerability was highlighted, Honda released a statement noting that it has no plans to update its older vehicles. It is likely that Honda will not issue updates for this vulnerability either. It is possible that this vulnerability extends beyond just Honda vehicles too.

Opening and Starting Honda Civic Vehicles with a HackRF Replay Attack

A few months ago University student Ayyappan Rajesh and HackingIntoYourHeart reported cybersecurity vulnerability CVE-2022-27254. This vulnerability demonstrates how unsecure the remote keyless locking system on various Honda vehicles is, and how it is easily subject to very simple wireless replay attacks. A replay attack is when a wireless signal such as a door unlock signal is recorded, and then played back at a later time with a device like a HackRF SDR.

Most car manufacturers implement rolling code security on their wireless keyfobs which makes replay attacks significantly more difficult to implement. However, it appears that Honda Civic models (LX, EX, EX-L, Touring, Si, Type R) from years 2016-2020 come with zero rolling code security:

This is a proof of concept for CVE-2022-27254, wherein the remote keyless system on various Honda vehicles send the same, unencrypted RF signal for each door-open, door-close, boot-open and remote start(if applicable). This allows for an attacker to eavesdrop on the request and conduct a replay attack.

In the videos on the GitHub demonstration page they show a laptop with GNU Radio flowgraph and a HackRF SDR being used to turn the engine of a Honda civic on, and to lock and unlock doors.

Various news agencies reported on the story, with "The Record" and bleepingcomputer contacting Honda for comment. Honda spokesperson Chris Martin replied that it “is not a new discovery” and “doesn’t merit any further reporting.” further noting that "legacy technology utilized by multiple automakers” may be vulnerable to “determined and very technologically sophisticated thieves.”. Martin went on to further note that Honda has no plans to update their vehicles to fix this vulnerability at this time.

Laptop and HackRF used to turn on a Honda Civic Engine via simple Replay Attack.

In the past we've seen similar car hacks, but they have mostly been more advanced techniques aimed at getting around rolling code security, and have been difficult to actually implement in the field by real criminals. This Honda vulnerability means that opening a Honda Civic could be an extremely simple task achievable by almost anyone with a laptop and HackRF. It's possible that a HackRF and laptop is not even required. A simple RTL-SDR, and Raspberry Pi with the free RPiTX software may be enough to perform this attack for under $100.

More information about the hack can be found on HackingIntoYourHeart's GitHub page. He writes:

Recording the "unlock" command from the target and replaying (this works on most if not all of Honda's produced FOBs) will allow me to unlock the vehicle whenever I'd like to, and it doesn't stop there at all On top of being able to start the vehicle's ENGINE Whenever I wished through recording the "remote start", it seems possible to actually (through Honda's "Smart Key" which uses FSK) demodulate any command, edit it, and retransmit in order to make the target vehicle do whatever you wish.

Samy Kamkar Talks Hardware Security on Hackster Café

Samy Kamkar is famous in the wireless and hardware information security scene for his research on various security exploits including methods to defeat rolling code security, and using a children's toy to open wireless garage doors. In a recent Hackster.io Hackster Café interview Samy talks about various security related topics including software defined radios.

Samy Kamkar first became notorious for software and hardware security exploits – including SkyJack, a custom drone that could take control of other UAVs, and OpenSesame, a hacked child's toy that can open remote-controlled garage doors. He now brings this deep experience to Openpath, the touchless access control company he co-founded in 2016. From security celebrity to founder, we sit down for a chat with Samy on this episode of Hackster Café (new episodes every Tuesday at 10am Pacific).

Samy Kamkar on Hardware Security // Hackster Café

Reverse Engineering a 30 Year Old Wireless Garage Door Opener with a HackRF and GNU Radio

At his childhood home Maxwell Dulin discovered that his garage door was controlled by a 30 year old system called the "Sears Craftsman 139.53708 Garage Door Remote". Being interested in SDRs Maxwell decided to see if he could reverse engineer the remote using his HackRF.

His first steps were to search for the frequency which he found active at 390 MHz. He then moved on to analyzing the signal with Inspectrum, discovering the OOK modulation, then working his way towards the binary control strings. One thing that helped with his reverse engineering was the use of the 9-bit DIP switches on the remote that configure the security code that opens up a specific door as this allowed him to control the transmitted bits, and determine which bits were used for the security code. With this and a bit of GNU Radio code he was able to recreate the signal and transmit it with his HackRF.

Finally Maxwell wanted to see how vulnerable this door is to a brute force attack that simply transmits every possible security code. Through some calculations, he discovered that brute forcing every possible security code in the 9-bit search space would only take 104 minutes to open any garage using this opener.

GNU Radio replaces a 30 year old garage door remote

SDR Videos from DEFCON 29

Recently some videos from this years (mostly virtual) DEFCON 29 conference have been uploaded to YouTube. Defcon is a major yearly conference all about information security, and some of the talks deal with wireless and SDR topics. Some interesting talks that we've found from the main Defcon and Villages are posted below.

You can view all the talks directly as well as the many others via the main stage DEFCON YouTube channel, the ICS Village Channel, RF Village Channel and the Aerospace Village. There are also several talks from the Ham Radio Village recorded on Twitch. Did we miss any interesting talks? Please let us know in the comments.

Smart Meters: I'm Hacking Infrastructure and So Should You (Hash Salehi)

Why Smart Meters? This is a question Hash is often asked. There's no bitcoin or credit card numbers hiding inside, so he must want to steal power, right? Openly analyzing the technology running our critical infrastructure and publishing the findings is something Hash is passionate about. In the wake of the great Texas freeze of 2021, we can no longer "hope" those in power will make decisions that are in the people's best interest. This talk will present research on the Landis+Gyr GridStream series of smart meters used by Oncor, the largest energy provider in Texas.

Cyber attacks on Industrial Control Systems (ICS) differ in scope and impact based on a number of factors, including the adversary's intent, sophistication and capabilities, and familiarity with ICS and automated indutrial processes. In order to understand, identify and address the specific points that can prevent or stop an attack, a systematic model known as "Cyber Kill Chain" is detailed, a term that comes from the military environment and registered by the Lockheed Martin company. While most are familiar with terms and theoretical diagrams of how security should be implemented, in this talk we want to present live how an attack chain occurs from scratch to compromise industrial devices, the full kill chain, based in our experiences. The goal is to land these threats into the real world without the need to carry out these attacks with a nation-state budget.

Smart Meters: I'm Hacking Infrastructure and So Should You (Hash Salehi)

DEF CON 29 - Paz Hameiri - TEMPEST Radio Station

TEMPEST is a cyber security term that refers to the use of electromagnetic energy emissions generated by electronic devices to leak data out of a target device. The attacks may be passive (where the attacker receives the emissions and recovers the data) or active (where the attacker uses dedicated malware to target and emit specific data).

In this talk I present a new side channel attack that uses GPU memory transfers to emit electromagnetic waves which are then received and processed by the attacker. Software developed for this work encodes audio on one computer and transmits it to the reception equipment positioned fifty feet away. The signals are received and processed and the audio is decoded and played. The maximum bit rate achieved was 33kbit/s and more than 99% of the packets were received.

Frequency selection not only enables maximization of signal quality over distance, but also enables the attacker to receive signals from a specific computer when several computers in the area are active. The software developed demonstrates audio packets transfers, but other types of digital data may be transmitted using the same technique.

[Slides Link] [Whitepaper]

DEF CON 29 - Paz Hameiri - TEMPEST Radio Station

DEF CON 29 RF Village - cemaxecuter - RF Propagation and Visualization with DragonOS

"Today's presentation will start with a brief history of DragonOS, where it started and where it's at today. After a short introduction, I'll dive into the subject of visualizing RF propagation with DragonOS. I'll be showing a fresh OS install and the necessary steps to generate a rough estimate of a transmitter based on SRTM-3 elevation data, as well as a new feature enabling visualization/calculations of the path between transmitter and receiver .

Topics and hands on (pre-recorded) demonstrations will include the following,

  • SPLAT! is an RF Signal Propagation, Loss, And Terrain analysis tool for the electromagnetic spectrum between 20 MHz and 20 GHz.
  • Signal Server Multi-threaded RF coverage calculator
  • Dr. Bill Walker's role
  • Signal Server and DragonOS integration
  • DF-Aggregator Developer / Modifications for visualization

I’ll conclude talking about future improvements to RF propagation and visualization tools."

DEF CON 29 RF Village - cemaxecuter - RF Propagation and Visualization with DragonOS

Continue reading

BSides Talk: Hacking RF Breaking what we can’t see

Over on YouTube the BSides Halifax channel has uploaded a recent talk given by Security Engineer Grant Colgan titled "Hacking RF Breaking what we can't see". In the talk Grant first shows the various bits of wireless devices that he tests, as well as the receiver equipment that he uses which includes a HackRF and RTL-SDR dongles. He goes on to show various live demos.

An often overlooked aspect of security is what happens when information is moving magically from one device to another with no wires. We know this as (usually) Wifi or Bluetooth and any attacks are usually based on these technologies. However when you widen the scope to RF wireless communication, A lot more tools become available. In this talk I will be talking about the attack and doing live demos.

The KiwiSDR Backdoor Situation

Since it's announcement in early 2016 we've posted many times about the KiwiSDR, a 14-bit wideband RX only HF software defined radio created by John Seamons (ZL/KF6VO). The KiwiSDR has up to 32 MHz of bandwidth, so it can receive the entire 10 kHz - 30 MHz VLF/LF/MW/HF spectrum all at once.

Compared to most other SDRs the KiwiSDR is a little different as it is designed to be used as a public web based SDR, meaning that KiwiSDR owners can optionally share their KiwiSDR online with anyone who wants to connect to it. The public functionality allows for some interesting distributed applications, such as TDoA direction finding, which allows users to pinpoint the location of unknown HF transmissions such as numbers stations.

In order to implement this online capability, the KiwiSDR runs custom open source software on a Beaglebone single board computer which connects to your home network. Recently there has been vocal concern about a security flaw in the software which could allow hackers to access the KiwiSDR. The flaw stems from the fact that the KiwiSDR has 'backdoor' remote admin access that allows the KiwiSDR creator to log in to the device and troubleshoot or make configuration changes if required. This backdoor has been public knowledge in the KiwiSDR forums since 2017, although not advertised and explicit consent to have it active and used was not required.

The intent of the backdoor is of course not malicious, instead rather intended as an easy way to help the creator help customers with configuration problems. However, as KiwiSDR owner Mark Jessop notes, the KiwiSDR operates in HTTP only, sending the admin master password in the clear. And as KiwiSDR owner and security researcher @xssfox demonstrates, the admin page gives full root console access to the Beaglebone. These flaws could allow a malicious party to take over the Beaglebone, install any software and perhaps work their way onto other networked devices. Another tweet from xssfox implies that the password hashes are crackable, allowing the main admin password to be easily revealed.

Creator John Seamons has already released a patch to disable the admin access, and as of the time of this article 540 out of 600 public KiwiSDRs have already been auto-updated. Owners of KiwiSDR clones should seek out updates from the cloner.

It is clear that the KiwiSDR is a passion project from John who has dedicated much of his time and energy to consistently improving the technical RF engineering side of the device and software. However we live in an age where malicious hacking of devices is becoming more common, so anyone releasing products and software that network with the internet should be reminded that they have a responsibility to also dedicate time to ensuring security.

John has reached out to us in advance and noted that he currently cannot yet comment publicly on this topic due to legal advice.

The KiwiSDR
The KiwiSDR

Demonstrating How Speakers Can Become an Unintentional RF Transmitter

Over on YouTube channel Privacy & Tech Tips has uploaded a video showing how he used an RTL-SDR to pick up RF emissions coming from some speakers that were unintentionally acting as wireless microphones. He goes on to show how you can clean up the noisy received audio in Audacity using the noise reduction filter.

I show how electromagnetic emissions from personal devices many times turn our devices into (potential) remote listening + transmitting devices when active (as demonstrated). I discovered my speakers unintentionally transmitting audio (speaker acting as microphone) to a few different frequencies via GQRX recording (computer/Pinetab microphones completely disabled).

There are a few frequencies you can tune into to listen in remotely. This includes listening in to conversations in the room as the speaker also acts as a microphone when playing sound (***tested only on my own devices***).

When the speaker volume is turned down, the signal goes down and the broadcast goes away. When the speaker volume is down, it no longer functions as a remote microphone + transmitter.

We use Audacity to clean up the audio. GQRX is used to record the signals which are filtered on the Pinetab with internal RTL-SDR. Audio processing/noise reduction done running Parrot Linux using Audacity.

We touch on the fact all electronic devices give off their very own unique electromagnetic emissions which can act as device signatures (strength depends on shielding).

Sometimes speaker wire not properly shielded (as is found in most PC's) can act as a radio transmitter antenna without user knowledge. Here I discovered a few frequencies broadcasting the audio live (.25 second delay for SDR modulation).

📡 Laptop Speakers Are Transmitting (Radio) Microphones