Category: Amateur Radio

An RTL-SDR & SDRplay based WebSDR Designed Specifically for QO-100 (Es’Hail-2) Monitoring

Over on YouTube user [Radio Electronics] has uploaded a useful video showing how to install your own personal SDRplay or RTL-SDR based WebSDR for QO-100 (aka Es'Hail-2) reception. Es'Hail-2 is the first geostationary satellite with amateur radio transponders on board, and is positioned at 25.5°E which covers Africa, Europe, the Middle East, India, eastern Brazil and the west half of Russia/Asia.

The idea behind a WebSDR is to run your RTL-SDR QO-100 receiver on a remote Raspberry Pi (perhaps mounted close to the antenna on your roof etc). The Pi runs custom WebSDR software that has been created from scratch by [Radio Electronics] specifically for monitoring Es'Hail-2. Then you can access your QO-100 receiver from any device on your network that has a web browser (computer/phone/tablet etc). The interface of his WebSDR appears to be quite slick, which multiple QO-100 specific options and labels.

Quite a lot of work must have gone into this software which looks to be of high quality, so it is definitely worth checking out if you are interested in QO-100/Es'Hail-2 monitoring.

Es'Hail-2 QO-100 WebSDR
Es'Hail-2 QO-100 WebSDR

In the first video he first talks about various methods for downconverting the 10489.550 MHz QO-100 CW signal into a range receivable by the RTL-SDR or SDRplay. He then goes on to show the exact steps to install and run his WebSDR software on a Raspberry Pi 3.

In the second video he goes on to demonstrate the web browser interface highlighting the QO-100 specific features that he has implemented such as being able to compensate for any LNB frequency drift via a feature that can lock to the QO-100 PSK beacon.

es-hail-2 QO-100 WebSDR Part-1: INSTALLATION

es-hail-2 QO-100 WebSDR Part-2: OPERATION

LimeRFE WSPR Tests

The LimeRFE is a power amplifier and filter bank solution designed for the low cost TX capable LimeSDR software defined radios. It has multiple bands from HF all the way up to 3.5 GHz, and is capable of putting out about 2W on the HF bands. Currently LimeRFE is crowdfunding over on CrowdSupply with a cost of US$599 or alternatively there is now a cheaper unit for US$449 without support for the cellular bands. The campaign is active for 4 more days from the time of this post, and after that the price is due to rise by another US$100.

The team at LimeMicro sent a unit to Daniel Estévez (EA4GPZ) for testing, and he has recently posted about his results and thoughts when using the LimeRFE for WSPR transmission with a 15m long wire antenna. Daniel connected his LimeRFE to his LimeSDR and used WSJT-X piped into SDRAngel via Pulseaudio to transmit WSPR on the 10m band. He notes that for lower bands, the LimeRFE will still need additional low pass filtering to attenuate harmonics. SDRAngel cannot yet control the LimeRFE so he also created a simple Python script for this purpose.

Unfortunately Daniel's unit only achieved 25dBm instead of the advertised 33dB, but in LimeMicro's post they note that they believe that this is due to shipping damage. However, even with only 0.3W power, Daniel's transmissions from Madrid were able to be picked up in the Canary Islands, Netherlands and Northern England.

WSPR Range with a LimeRFE (reduced 0.3W output)
WSPR Range with a LimeRFE (reduced 0.3W output)

Using SDR For QO-100 Satellite Operation

Es’hailsat, otherwise known as QO-100 is the first geostationary satellite with an amateur radio payload on-board. The satellite contains both a Wide Band transponder for experimental modes and DVB-S Digital Television and a Narrow Band transponder used mostly for SSB voice and some digital mode contacts with other amateur operators. If you’re unfamiliar with this satellite we’ve covered it in previous articles, like in [Es’hail Transponder Now Active]

While many choose to use a transverter connected to a traditional amateur transceiver, others have turned to use Software Defined Radios to complete their satellite ground stations.

[Radio Innovation] posted a video back in March showing his contact on QO-100 using a LimeSDR Mini as the 2.4 GHz transmitter and a 10 GHz LNB for the downlink.

Calling cq on QO-100 with LIMESDR

The PlutoSDR has been frequently seen used for QO-100 satellite operation on the Wide Band transponder due to its ease of DVB-S transmission utilizing software such as [DATV Express] but more recently there have been more and more operators turning to SDR for their day to day satellite operation.

It will be interesting to see how these stations evolve, perhaps by the time North America has access to a similar satellite, we’ll be prepared to operate it.

YouTube Review of the RS-918: A Chinese Clone of a Clone of the mcHF SDR

Over on YouTube Kevin Loughin has uploaded a video reviewing the "Recent RS-918" which is a Chinese clone of the popular mcHF open source SDR transceiver made by Chris (M0NKA). The mcHF is a well known small and inexpensive home brewed open source HF QRP SDR that was started back in 2013. It's sold either as a kit for 236.82 GBP (US$287), or with metal enclosure at 292.78 GBP (US$354). The kit comes with SMD components already soldered, but you still need to solder the through hole components and assemble it into the enclosure. The RS-918 clone can be found fully assembled as a ready to use product on eBay for approximately US$400.

As the "Recent RS-918" is a commercial Chinese clone of an open source project that has restrictions against commercial use, it goes against the spirit and legality of the licence imposed by the original creator. So based on that Kevin cannot recommend the RS-918 SDR. However, from his review Kevin notes that apart from some burning hot areas on the metal after transmitting, the SDR itself works and has a nice minimal design. The design appears to be based on an older version of the mcHF, so the latest upgrades are not available.

Kevin's review just overviews the RS-918 and doesn't go into depth reviewing the radio. For the rest of his video Kevin discusses the lineage of the RS-918, noting that it is actually a clone of the Ailunce HS1, which in turn is a clone of the mcHF. He then goes on to discuss the mcHF itself, noting that we should support all the hard work that Chris has put in (and continues to put in) to the original mcHF rather than these immoral clones.

Ham Radio - The RS-918 clone of a clone of an outstanding open source SDR transceiver, the mcHF.

Slow Scan Moon Bounce Event for 50th Anniversary of the Moon landing

Fifty years ago Neil Armstrong became the first man to step foot on the moon. This weekend on June 20th and 21st 2019 Amateur Radio operators at the [PI9CAM] team have been transmitting Slow-Scan Television images in commemoration of this historic event at the Dwingeloo radio astronomy station in the Netherlands. This station is the oldest rotatable 25-meter radio telescope in the world. 

 Dwingeloo radio astronomy station
Dwingeloo radio astronomy station
An EME SSTV Image
An EME SSTV Image

Slow-Scan Television is a method often employed by ham radio operators to send photos over radio waves. You may be familiar with this from some of our previous articles on the SSTV event held by ARISS for the International Space Station.

Station [S1NDP] has previously sent slow-scan EME images between the PI9CAM team and himself. These images can potentially be heard by anyone within line-of-site with the moon during the operation of this event.

The team transmit in the 23cm band at a frequency of 1296.11 MHz, according to the ARRL even a 2.5 to 3meter dish should be enough for reception assuming you have a 23cm feed for your dish. It will be interesting to see what photos are heard by the end of this event.

Homebrew SDR Transceiver for HF Operation

Traditionally when we think about Software-Defined Radio we’re thinking about little USB adapters that unlock a world of radio in the palm of our hands. This is done by allowing us to directly sample the IQ data from the mixer within the SDR.

However, this isn’t the only way to experience Software-Defined Radio. Ham Radio operator [Charlie Morris] has uploaded a 10 part series on YouTube explaining how he implemented his own HF transceiver, including custom software. Some of the components such as the amplifier and filters are built completely from scratch, other components use a little DSP magic from a “Teensy” microcontroller. 

Charlie actually samples the I and Q data in a similar way that today’s SDRs do and even implemented the transmit side of the radio so he can make contact with other radio operators around the world, and man… it sounds good!

You can find a complete playlist from Charlie with well-explained videos that go over his entire process from planning, schematics, layout and final operation. The channel appears to be quite active and will surely continue to pump out amazing content.

Homebrew SDR SSB Rig – Part 9 First On-Air QSO!

An RTL-SDR and Pi 3 Based Ground Station for Simulated CubeSats

CubeSats are small and light satellites that can these days be built and launched into orbit by almost anyone with a small budget of roughly $40,000. They are a great way for schools and other organizations to get into a space based technology project. A "simulated" CubeSat is one that is not designed to be really launched into space, and is made from low cost hardware. The idea is that simulated CubeSats can be used as tools to help demystify the inner workings of satellites to the public and help CubeSat builders get experience and competence before building the real thing.

A Simulated CubeSat made from a Solar Panel board, Pi Zero, UPS and Tranceiver.
A Simulated CubeSat made from a Solar Panel board, Pi Zero, UPS and Transceiver.

A team from AMSAT have been working on creating open source CubeSat simulator hardware and software. In order to demonstrate the RF capabilities of the simulator a ground station simulator is also required. Recently the team have uploaded instructions on creating a Raspberry Pi and RTL-SDR based ground station.

If you're interested in the CubeSat simulator hardware itself, there was a presentation held back in 2018 that may be of interest to you. According to the presentation somewhere between 30% - 50% of CubeSats fail as soon as they're deployed, so building competence with simulated hardware is a good goal.

2018 AMSAT William A. Tynan W3XO Memorial Space Symposium - Saturday Sessions

Decoding FT8 with an RTL-SDR Blog V3 in Direct Sampling Mode

Over on YouTube user ModernHam has uploaded a useful tutorial showing how to use our RTL-SDR Blog V3 dongles for FT8 monitoring. The RTL-SDR Blog V3 has a built in direct sampling circuit which allows for reception of HF signals without the need for any upconverter. FT8 is an amateur radio weak signal digital communications mode which can be received all around the world even with low transmit power.

In his setup he uses SDR# and Virtual Audio Cable to pipe audio to the WSJT-X decoder. His video goes through all the steps and settings that need to be set and then shows a demo of some signals being received. ModernHam also has another video uploaded a few days earlier which is a more general introduction to FT8 decoding.

If you're interested we uploaded a tutorial last year that shows how to set up a Raspberry Pi 3 based FT8 decoding station with a V3 dongle.

Decoding FT8 with a RTL-SDR (Software defined Radio)