Tagged: rtl-sdr

SpyServer Now Supports RTL-SDR Direct Sampling

SDR#'s SpyServer streaming server now supports the direct sampling mode on RTL-SDR dongles and it's probably the cheapest way to set up a HF streaming server. SpyServer is a streaming server for SDR# and Airspy products. Although it's designed for Airspy products it also works well with RTL-SDR dongles.

On RTL-SDR dongles the direct sampling mode allows you to receive HF frequencies by bypassing the tuner. The dynamic range is not quite as good as using an upconverter and there are Nyquist images from sampling at 28.8 MHz centered around 14.4 MHz, but in most cases it is good enough to give people decent HF results especially if filtering is used. Normally a hardware hack is required to enable direct sampling, but our RTL-SDR Blog V3 units have direct sampling built in and ready to go just by connecting an HF antenna to the SMA port, and enabling the Q-branch direct sampling mode.

There is a sample server set up at sdr://151.20.181.90:5555.

SpyServer Direct Sampling Mode
SpyServer Direct Sampling Mode

Talks from the AMSAT-UK RSGB 2017 Convention

The Radio Society of Great Britain (RSGB) and AMSAT-UK recently presented a number of talks at their latest convention held in October of this year. Some of the talks are SDR related and are interesting for those interested in satellite reception. A couple of interesting SDR related talks are presented below, and the rest of the talks can be accessed on their YouTube page.

Software defined radio for the satellite geek - Alex Csete OZ9AEC

In this talk Alex Csete (Oz9AEC) who is the programmer behind the popular GQRX software that is often used with RTL-SDRs discusses his latest work and some of his experiences with writing software for SDRs.

2017: Software defined radio for the satellite geek - Alex Csete OZ9AEC

Going to space the libre way - Pierros Papadeas, Libre Space Foundation

In this talk Pierros Papadeas who is the founder of the Libre Space Foundation discusses their SatNOGS project. SatNOGS is a project that uses RTL-SDRs in custom 3D printed home made satellite tracking ground stations. It aims to enable easy access to live satellite data online by significantly increasing ground station coverage.

2017: Going to space the libre way - Pierros Papadeas, Libre Space Foundation

A Tutorial on Receiving HRPT Weather Satellite Images with an SDRplay RSP2

RSP2user's HRPT equipment

Over on the SDRplay forums user 'RSP2user' has put up a quality post describing how he receives HRPT weather satellite images with his SDRplay RSP2. HRPT stands for 'High Resolution Picture Transmission' and provides a much higher resolution image compared to the APT weather satellite images typically downloaded from NOAA satellites. Somewhat confusingly the picture quality of HRPT is similar to LRPT (low rate picture transmission) which is used on the Russian Meteor M series weather satellite. HRPT provides 1.1 km resolution, whilst LRPT provides 1 km resolution.

Currently there are multiple satellites broadcasting HRPT signals including NOAA 19, NOAA 18, NOAA 15, Meteor M2, Fengyun 3B, Fengyun 3C, Metop A and Metop B.

The difference in difficulty of receiving APT and LRPT versus HRPT transmissions typically occur in the L-band at about 1.7 GHz, and requires a directive high gain antenna with tracking motor to track the satellite as it passes over. This makes these images many times more difficult to receive compared to APT and LRPT which only require a fixed position antenna for reception at the more forgiving 137 MHz.

Over on his post RSP2user shows how he uses a repurposed Meade Instruments telescope tracking mount and controller to drive the tracking of a 26 element loop Yagi antenna. A 0.36dB noise figure LNA modified with bias tee input is used to boost the signal and reduce the noise figure. The signal is received by a SDRplay RSP2 and processed on a PC with USA-satcoms HRPT decoder software, which is available for purchase by directly contacting him. The HRPT signal bandwidth appears to be about 2.4 MHz so possibly an RTL-SDR could also be used, but it might be pushing it to the limit.

If you are interested, RSP2user also uploaded an APT weather satellite image reception tutorial on another post. This tutorial shows how to build a quality quadrifilar helix antenna as well.

Receiving the HRPT signal on USA-Satcoms' HRPT decoder.
Receiving the HRPT signal on USA-Satcoms' HRPT decoder.

Building a 3D Printed LHCP Helical L-Band Feed for Inmarsat, AERO and HRPT

Thanks to Manuel a.k.a. Tysonpower for submitting his latest YouTube video tutorial about building an 1550 MHz L-band LHCP helical antenna for receiving satellite signals such as Inmarsat, AERO and HRPT.

Manuel's design is based on a 3D printed part which is used to accurately form the helical winding. The winding then mounts onto an aluminum plate and a satellite dish arm using a custom 3D printed adapter for the dish arm. In the video he uses the helical feed with an 80cm satellite dish and a standard 40mm LNB mount on the dish arm. Attached to the feed are two LNAs in series which help to lower the noise figure and reduce losses in the coax cable.

With this setup he writes that he was able to get very good AERO and Outernet reception from Alphasat (25E geostationary). He also writes that he's had good results using it for HRPT reception as well.

The 3D printing STL files and list of parts required are available on Thingiverse, and the companion video is shown below. Note that the video is narrated in German, but English subtitles are available.

[EN subs] LHCP Helix L-Band Feed - 3D Druck für eine genaue Helix

Manuel's L-Band Helical Feed
Manuel's L-Band Helical Feed

QrssPiG: Decoding QRSS on a Raspberry Pi with an RTL-SDR

QRSS is a ham communications mode that is essentially just very slow CW (morse code), with each dash/dot being broadcast for a number of seconds. With QRSS instead of audibly decoding the morse code signal, it is decoded visually via a spectrum display (or automatically by software). It is designed to be a QRP mode, which means that hams transmitting QRSS can be heard all over the world even though very low transmit power is used. 

QrssPiG is a QRSS grabber program that runs headless on a Raspberry Pi and can interface with an RTL-SDR. It automatically generates the waterfall graphs of received QRSS images, and supports uploading them via SCP or FTP. The software can also run with a HackRF, or via audio piping from another SDR or standard hardware radio.

Recently on Twitter @ON4CDJ has been trying QrssPiG with an RTL-SDR V3 and has been having good results.

Testing Public Airspy HF+ SpyServers over the Internet

SpyServer is a streaming server for SDR# which allows you to use Airspy and RTL-SDR radios remotely over a network connection. There is now a list of publicly available SpyServers that you can connect to over on the airspy.com website.

The servers that are currently online include some streaming from Airspy HF+ devices, which is the hotly anticipated but as of yet unreleased HF receiver from Airspy. Over the last few months and weeks a number of prototype devices went out to testers and programmers and some have now put them online with a SpyServer. There are also some Airspy One/Mini and RTL-SDR devices available for streaming too.

To connect to one of the servers simply download the latest version of SDR# from airspy.com, and then in SDR# select SpyServer from the Source menu. Enter the URL from the list into the box and press the play button up the top. Note that you must ensure that there are no spaces after entering the URL in SDR#.

Most servers are locked to a particular frequency band, but some allow for free tuning. But if more than one person is connected to the server free tuning will be locked until there is only one person connected again. Currently streaming from most servers seems smooth, but it's possible that some may struggle if many users are connected at once.

If you want to set up your own SpyServer then we recently put up a tutorial which is available here.

The current list of SpyServers
The current list of SpyServers

Alternative streaming SDR lists for other non-Airspy SDR hardware include sdr.hu and websdr.org, but those stream compressed audio instead of IQ data.

Outernet Dreamcatcher Setup with ADS-B dump1090 and PiAware Tutorial

The Outernet Dreamcatcher is a single board PC with a built in RTL-SDR. It has a TCXO and two SMA ports, one being amplified and filtered for L-band applications and the other being a regular port for all other applications.

With built in computing hardware the Dreamcatcher can be used as a standalone unit for various applications. As the Dreamcatcher is now on sale we've decided to create a brief tutorial that shows how to set one up as a cheap ADS-B aircraft radar receiver, and also how to set it up as a PiAware feeder. PiAware is software that allows you to feed FlightAware.com which is an ADS-B aggregatpr.

Any simple SMA antenna can be used, like our Dipole kit, an old RTL-SDR whip antenna, or even a short piece of wire.

We also have a previous review of the Dreamcatcher available here. In the past the main problem with the $59 USD Dreamcatcher was that you could get a more powerful Raspberry Pi 3 and RTL-SDR dongle for a similar price. But now at the sale price of $39 USD the Dreamcatcher is definitely a great deal.

Note that we'd recommend NOT purchasing the Dreamcatcher specifically for the Outernet data signal as we're unsure exactly how long that signal will continue to be broadcasting for. 

The Outernet Dreamcatcher
The Outernet Dreamcatcher

What follows below is a tutorial that shows how to set up a Dreamcatcher. The tutorial installs dump1090 at the same time, but afterwards could be used for a number of other applications.

Continue reading

Adam Tests his UP-64 Upconverter with an RTL-SDR

Over on YouTube Adam 9A4QV has uploaded a video of him testing out his 'UP-64' upconverter together with an RTL-SDR. An upconverter moves low frequencies 'up' into a higher frequency. This is useful for HF reception, as normal reception on an RTL-SDR starts at about 24 MHz (without using direct sampling mode).

Adam previously manufactured and sold his UP-100 upconverter, which was an upconverter of his own design that utilized a 100 MHz oscillator. These days it has been accepted that using an upconversion frequency that avoids the broadcast FM band is generally better as it avoids the interference that can come from very strong FM signals. The 64 MHz oscillator on the UP-64 avoids the broadcast FM band for the most part unlike the older UP-100.

RTL-SDR + UP-64 test on 14MHz