Tagged: rtl2832u

Discovery Dish Updates and Some Cool Hi-Res Images

We have recently posted an update on our Discovery Dish crowd funding campaign over on Crowd Supply. Check it out on the update page, or on the repost down below.

Discovery Dish Teardown Session Livestream Recording

Thank you to Helen Leigh and Crowd Supply for featuring us on one of their Teardown Sessions live streams a few days ago. If you missed it, feel free to watch the recording below. On the livestream we discussed the Discovery Dish and talked a bit about the journey we took to get to the final product design.

Teardown Session 38: Discovery Dish

Enclosure Glands and Vents

We have decided to include a few cable glands and vents with the Discovery Dish Enclosure, as these will ensure that the bottom of the enclosure is protected against water jets and any splash back from the ground, as well as allowing the electronics inside to breathe a bit. Allowing waterproof enclosures to breathe is important in many environments to avoid condensation build up inside.

The glands and vents will be metal to ensure that RF tightness of the enclosure is maintained as much as possible.

The electronics inside can be passively cooled via thermal pads that sink all generated heat to the metal enclosure which acts as a large thermal mass and heatsink.

In the image below you can also see the mounting board. We are still planning to reduce the hole spacings on the board.

Rotator Timelapse

We’ve been testing an early prototype design of our upcoming antenna rotator for the Discovery Dish, and have created a quick preview timelapse of it running overnight. With mechanical designs like this it’s important to do some long-term testing, so we’re going to be running prototypes non-stop for several months while tracking many more satellites than would be typical.

DD Rotator Preview

 

Example Weather Satellite Images Downloaded

Some people have asked for high resolution examples of what can be received from satellites with the Discovery Dish. Below are a few samples.

GOES 18 Full Disk

Discovery Dish GOES 18 Full Disk Blend

 

GOES 18 Mesoscale

GOES 18 EMWINN

GOES 18 NWS

Metop AVHRR (Advanced Very High Resolution Radiometer)

Metop IASI (Infrared Atmospheric Sounding Interferometer)

GK-2A Full Disk

FengYun 4A Full Disk

Meteor MSU-MR (Multispectral Scanner Unit - Medium Resolution)

NOAA AVHRR (Advanced Very High Resolution Radiometer)

Crowdfunding Goals

We just wanted to clarify a point regarding how crowdfunding works. If the goal isn’t reached then everyone who ordered won’t be charged. We have had a few concerns from potential customers wondering if we will keep the money if the goal isn’t reached, but this is certainly not the case! In fact, credit cards will only be charged if we hit our funding goal. You can learn more in the Crowd Supply Guide.

The goal is set relatively high as this product requires a number of molds to be created for the dish and the various plastic parts, and molds typically have a high fixed initial cost. There is also a high minimum order quantity that we need to commit to in order to do a production run.

But the campaign is currently over 70% to its funding goal and we are expecting some large reseller orders to come in during the last few days of the campaign, so please don’t worry as the goal will almost certainly be reached with the help of just a few more individual supporters. If you have been on the edge, please consider supporting us to get this product started!

Customer Questions

In my environment temperatures get down to -20 to -30 degrees C. Will the electronics in the feed hold up?

The components used in the feed all have ratings down to at least -40 degrees C. In very cold environments, the one thing we would suggest considering is if a dish heater is required. These are heating strips that can be placed on the dish and can help melt snow/ice buildup.

What is the hole pattern on the dish?

The hole pattern on the dish has no specific function, the holes are simply used for reducing wind loading and weight. The manufacture of the prototype dish requires that the holes be cut by laser cutter, but the laser cutter we have available was not large enough to do the entire dish at once. So it was manually rotated around, and this caused an uneven pattern.

The production version of the dish will split into three petals, and each petal will be manufactured via a stamping process. Stamping is when a sheet of metal is placed under a heavy molded block of metal, and then that block of metal is pressed down on the sheet metal to create a desired shape. With this stamping process we will have perfectly neat hole patterns.

I suggest that the S-band version of the feed not use a downconverter, and just use an SDR that can receive S-band instead.

We currently have a similar opinion.

To explain this customer question/comment, we note that as mentioned in the previous update, we are planning to soon test an S-band version of the feed which should be able to receive S-band satellites.

However, the typical software defined radio used is an RTL-SDR, which cannot reach S-band frequencies like 2.2 GHz where most S-band satellites transmit. To get around this, we could add downconversion circuitry to the S-band feed, which would increase complexity and cost. This would convert the 2.2 GHz frequencies down to a frequency that the RTL-SDR can receive (below 1.766 GHz). Alternatively, we could simply recommend that customers interested in S-band reception instead use another SDR such as the HackRF, PlutoSDR, or LimeSDR Mini 2.0.

Once we have tested the S-band version of the feed, we will make a decision on if we should add a downconverter or just recommend the use of other SDRs that can reach the S-band.

Can any of the feeds be used for 1296 MHz EME (earth-moon-earth bounce communications)?

Sorry no, the feeds will not be suitable for EME, as that requires transmission which our feeds do not support.

I would like to use the dish on an astronomical mount. What is the expected weight of the dish and feed?

The dish itself weighs less than 1 kg (2.2 lbs). Together with the feed and mount we expect it to weigh a total of less than 1.5 kg. This is significantly lighter than a Wi-Fi dish which is already 1.6 - 2 kg (depending on the brand) for just the dish by itself.

Are weather satellites encrypted?

No, most weather satellites like this are not encrypted. Although these satellites come from various countries’ governmental space and/or military agencies, weather satellite data is generally considered public science. If it’s not necessary, adding encryption is undesired as it adds complexity to the system and increases the amount of data that needs to be transferred.

Obviously high-end military and commercial satellites are encrypted and we cannot receive data from those. It’s possible that future weather satellites could be encrypted, but given the current trend of new weather satellites being unencrypted this seems unlikely.

 

A 3D Printed RTL-SDR Whip Antenna Mount

Thank you to Adrian for submitting to us his new 3D printed design that holds up a whip antenna connected to an RTL-SDR. Adrian writes:

Telescopic antennas attached to RTL-SDR dongles tend to tip over. This mount holds them straight. The supplied .stl files match antenna diameters of 6 to 8 mm. Mounts with other diameters are easily obtained by modifying the supplied OpenSCAD file, see instructions below [on the Thingiverse page].

This is an alternative to or even an improvement over my previous designs
https://www.thingiverse.com/thing:6183925
https://www.thingiverse.com/thing:6057513

Adrian's RTL-SDR Whip Antenna Holder

Tech Minds: Make your own Aircraft Tracking Antenna with RTL-SDR

Over on the Tech Minds YouTube channel Matt has posted a video tutorial that shows how to build a cheap quarter wave ground plane antenna tuned for 1090 MHz. This is the frequency of ADS-B (Automatic Dependent Surveillance–Broadcast), which is a signal broadcast by aircraft that can be used to track their GPS location.

The antenna is created from an SMA chassis mount socket, one copper wire for the receiving element, and four copper wires for the ground plane. They are soldered directly onto the socket. An LNA is added to improve reception.

Make Your Own Aircraft Tracking Antenna With RTL SDR

Crowd Supply Discovery Dish Teardown Session: Thursday 30 November Noon PST

Crowd Supply is hosting Teardown Session 38 on Thursday 3- November at Noon PST time which will feature the Discovery Dish. Join us for this livestream where I will be talking about and showing the Discovery Dish prototype.

Discovery Dish is currently being crowd funded over on Crowd Supply. It is designed to be an easy entry to the world of L-band weather satellites, hydrogen line radio astronomy, and Inmarsat reception. The Discovery Dish aims to be the start of an ecosystem of hardware designed to get users set up with satellite reception, including a planned companion light-duty antenna rotator.

Remember to click on the “Notify me” button on the YouTube link in order to be reminded about the stream!

Teardown Session 38: Discovery Dish

TotalPower: Windows Program for Hydrogen Line Detection and Analysis with an RTL-SDR

Thank you to Mario A. Natali (I0NAA) who wrote in an wanted to share his Windows software called TotalPower which is designed for mapping the galactic Hydrogen line and works with RTL-SDR dongles.

The Hydrogen Line is an observable increase in RF power at 1420.4058 MHz which is created by Hydrogen atoms. It is most easily detected by pointing a directional antenna towards the Milky Way as there are many hydrogen atoms in our own galaxy. This effect can be used to measure the shape and other properties of our own galaxy.

Mario writes:

[TotalPower] was originally designed to measure total power of received spectrum and that, thanks to the input of many users, is now able to perform many other tasks including the 3D mapping of selected sky areas and HLine detection with the ability to estimate the speed of rotation of galaxy arms ( respect to our position )

TotalPower is available from the downloads section on Mario's website. Mario has uploaded a manual which explains how the program works, which we have mirrored here.

TotalPower measuring the rotational speed of galactic arms
TotalPower measuring the rotational speed of galactic arms

Modifying a 2.4 GHz WiFi Grid Antenna for Improved 1.7 GHz Reception + DIY Rotator Instructions

People have had much success in receiving L-band weather satellites like GOES and polar orbiting HRPT satellites using 2.4 GHz WiFi grid dishes, even though their 1.7 GHz signals are considered out of band for the WiFi grid dish feed. While this works most of the time, reception can be sometimes weak and borderline.

Over on Facebook and usradioguy.com, António Pereira has been sharing his mod which optimizes a 2.4 GHz feed for 1.7 GHz instead. The mod involves removing the enclosure of the feed which requires a heat gun to remove the glue, extending the feed's dipole by soldering on copper extension strips, tuning the dipole with a VNA, and finally tweaking the focal point. This results in an optimized L-band weather satellite antenna.

António Pereira has also shared instructions for creating an antenna rotator from an ESP32, Arduino Nano, two NEMA 23 stepper motors, two stepper controllers, two 50:1 worm gearboxes, and two optical homing switches, as well as power supplies for the motors and circuits. He also shares the Arduino code that he's written.

We also note that we currently are crowd funding for our Discovery Dish, which will be a ready to use satellite dish system for L-band weather satellites, as well as Inmarsat and hydrogen line radio astronomy. Check it out on Crowd Supply.

Modified dipole feed on a 2.4 GHz WiFi grid antenna feed
A DIY antenna rotator for the modified 1.7 GHz WiFi grid dish.
A DIY antenna rotator for the modified 1.7 GHz WiFi grid dish.

A Technical Overview of the Watch Duty Wildfire Monitoring Project Powered by RTL-SDRs

Previously in 2022 we posted about Watch Duty, a nonprofit organization aiming to improve access to live public safety information regarding wildfires in California. Several populated regions of California are extremely prone to wildfires, and it's important that residents get timely notifications about nearby wildfires so they can evacuate early and/or prepare their defensible spaces.

The system works by using RTL-SDRs to monitor public safety radio channels, and ADS-B aircraft positions of firefighting aircraft in order to gather information in real time about how wildfires are moving. Volunteers monitor this information and distribute anything of importance via a smart phone app to the public. Often the information is significantly more timely compared to official channels.

Recently Nick Russel, the VP of Operations at Watch Duty sent us a link to a technical overview blog post explaining how their 'Echo' remote monitoring devices work. The post describes how Echo devices consist of a Raspberry Pi and multiple RTL-SDR Blog dongles, with all the electronics being powered via Power over Ethernet (PoE). For the antenna a wideband Discone is used. 

Inside the Watch Duty 'Echo'
Inside the Watch Duty 'Echo'

The rest of the post explains how their voice monitoring system works, how "tone out detection" works, which are orders for engines, strike teams, and other heavy equipment, how they make use of ADS-B data and how they are able to remotely maintain and update the system.

Importantly, Watch Duty note that they rely on volunteers and donations from the community, so please consider donating via the Watch Duty app.

Watch Duty | Echo Radio Project | Fixing emergency radio dead zones

RTL-SDR Blog V4 now in stock at Amazon USA

Just a quick note for those waiting to confirm that the RTL-SDR Blog V4 is now in stock at Amazon USA. We have linked both the dongle + antenna set, and dongle only listings below. For customers outside of the USA please check our international purchasing links at www.rtl-sdr.com/store.

With the demand being high, if you were waiting please order soon as the next shipment most likely won't be in until January. To learn more about the RTL-SDR Blog V4, please see our product release post.

The RTL-SDR Blog V4 Dongle
The RTL-SDR Blog V4 Dongle