Category: Airspy

Fenu Radio Reviews the Airspy HF+ Discovery

The Airspy HF+ Discovery is a smaller, lighter and improved version of the Airspy HF+ which is an HF and VHF SDR with very high dynamic range. The Discovery builds on the HF+ by adding low loss preselectors. This increases the dynamic range even further, and allows the Discovery to compete with some very high end (and much more expensive) SDRs.

Currently the Airspy HF+ Discovery is available for preorder for USD$169. There have been a few delays in getting the unit out, but it appears that the Airspy team will begin shipping very soon.

Over on his blog, radio product reviewer Fenu-Radio has received an Airspy HF+ Discovery, and has given it an in depth review and put it through several real world tests. Fenu-Radio notes that while the initial prototype unit that he received had some issues with overload above 19 MHz, the latest production version has completely remedied this, resulting in impressive performance that competes favorably with the high end USD$2000 Winradio G33DDC software defined radio.

In the review Fenu-Radio compares the Discovery against the G33DDC and finds absolutely no difference in performance between the two. In the review he's also uploaded several audio comparison samples so that you can hear for yourself how identical the two radios are.

Fenu-Radio's Airspy HF+ Discovery Review Unit
Fenu-Radio's Airspy HF+ Discovery Review Unit

A Low Cost 2.4 GHz Downconverter from off the Shelf Dev Boards

Over on GitHub Ian Wraith has released his design and microcontroller code for a low cost 2.4 GHz downconverter circuit. A downconverter is a hardware device that shifts the signals that it receives into a lower frequency band. This is useful in the case of RTL-SDRs and Airspy SDRs, as their maximum frequency range is only 1.7 GHz. Ian's 2.4 GHz downconverter reduces those 2.4 GHz signals down to 1 GHz, which can then be received with his Airspy.

Rather than designing a circuit from scratch, Ian's design makes use of several very cheap Chinese evaluation/development boards that he found on eBay. It costs of a mixer board, oscillator board, and an STM32 development board for controlling the oscillator board via SPI. The whole set of hardware cost him less than £30 (~37 USD).

After spending some time working through the difficulties in programming the SPI interface on the STM32 board, he was able to get the downconverter circuit fully working. He notes that he's been able to receive WiFi, Zigbee, Bluetooth and ISM band signals at 2.4 GHz, as well as 3G and 4G cellular signals at 2.6 GHz.

Ian Wraith's Downconverter consisting of three off the shelf cheap Chinese eBay boards.
Ian Wraith's Downconverter consisting of three off the shelf cheap Chinese eBay boards.

SignalsEverywhere: Common Modulations Tutorial Video

This week on the SignalsEverywhere YouTube channel, host Corrosive gives us a tutorial on common modulations that you'll see on your software defined radio. His tutorial covers Amplitude Modulation (AM), Frequency Modulation (FM), Single Side Band (SSB) and Conintuous Wave (CW) modulations. In the video he shows what they look like and how to select the correct mode and bandwidth settings in SDR#. Corrosive uses an Airspy in the video, but the same concepts are valid for any SDR, like the RTL-SDR.

If you're new to SDR then this is a great introductory video to watch and learn from.

AM FM SSB and CW | Common Modulation You'll See on SDR

SignalsEverywhere: What SDR To Buy? Choose the Right one For You

Over on his YouTube channel SignalsEverywhere, Corrosive has just released a new video titled "Software Defined Radio Introduction | What SDR To Buy? | Choose the Right one For You". The video is an introduction to low cost software defined radios and could be useful if you're wondering which SDR you should purchase.

The video includes a brief overview of the Airspy, KerberosSDR, PlutoSDR, LimeSDR Mini, HackRF, SDRplay RSPduo and various RTL-SDR dongles. In addition to the hardware itself Corrosive also discusses the compatible software available for each SDR.

Software Defined Radio Introduction | What SDR To Buy? | Choose the Right one For You

Tracking Tagged Orangutans in the Bornean Jungle with Drones, GNU Radio and an Airspy Mini

Due to various human activities causing the environmental destruction of it's habitat, the Orangutan is now classed as a critically endangered species. In addition to being endangered, Orangutans face another problem in that they are often captured and sold as pets due to their intelligence and cuteness.

To combat these problems, NGOs, charities and rescue centers have been using RF tags on rehabilitated Orangutans that have released back into the wild. The RF tag regularly transmits a data-less pulse at VHF frequencies which is then typically tracked using direction finding equipment such as a directional Yagi antenna. The range is only approximately 200-400m. 

In order to try and alleviate the range issue Dirk Gorissen has been working on creating a drone based system that could detect the VHF transmission and create a heatmap of Orangutan positions. The first iteration of his system uses an RTL-SDR, Odroid and lightweight loop antenna. A simple Python script then monitors the spectrum and logs the drones current location, altitude, speed and heading when a pulse is detected. Tests confirmed that the signal was able to be detected from the sky, but unfortunately the drone was eventually crashed and lost before it could be properly used.

In his second try a few years later, Dirk used a larger drone and switched SDRs to an Airspy Mini with preamp. The pulse detection code was also improved by using GNU Radio to create a DSP algorithm combining peak detection, cross correlation with a known template of the signal, and a phase locked loop. Visualization and data transfer is achieved through react.js and a Flask web server running on the drones WiFi hotspot. This time with the new drone and system Dirk was able to successfully detect and locate several Orangutan's on various flights, despite noting that some RF tags appeared to be glitchy.

Orangutan Detected with Drone, Airspy Mini and GNU Radio.
Orangutan Detected with Drone, Airspy Mini and GNU Radio.
Drone used in the experiment
Drone used in the experiment

Airspy HF+ Discovery Now Available for Preorder + Brief Initial Review

The Airspy team have recently announced the release of their new "Airspy HF+ Discovery". The Discovery is a smaller, lighter and improved version of the Airspy HF+. The frequency range, bandwidth and bit depth and specs all remain the same, but there are some improvements to the dynamic range due to the addition of preselectors. The original Airspy HF+ was released back in mid-2017 and it still is in our opinion one of the best low cost HF DX SDRs because of its very high dynamic range design, so strong interfering signals are not much of a problem. We have a previous review of the Airspy HF+ available here were we compare it against a number of other HF SDRs.

Although the dynamic range was very high, some users reported that extremely strong signals could still desensitize the HF+. So in response the new HF+ Discovery improves on the dynamic range even further by including multiple low insertion loss preselectors built in to the front end. For HF there is are 0, 5, 10 or 17 MHz High Pass Filter corners, and 5 or 31 MHz Low Pass filter corners in series which can provide filtering for a number of bands. For VHF, there are 60-118 MHz and 118-260 MHz filters. The designer boasts that the inclusion of these filters bring the HF+ Discovery up to the performance level of expensive new SDR based ham rigs like the Icom 7300.

Airspy HF+ Discovery Block Diagram
Airspy HF+ Discovery Block Diagram

As for the physical design, the enclosure is now much smaller (60 x 45 x 10 mm) and made from plastic. These changes make the SDR very light at only 28 grams (1 oz). Although the case is plastic, local interference doesn't seem to be an issue as the PCB itself is fully shielded. The plastic case is rugged and will withstand a beating. Also, the original HF+ had two input ports, one for HF and one for VHF whereas the HF+ Discovery only has one input port which covers all bands.

Despite the improvements and additional circuitry, the Airspy HF+ Discovery is actually priced cheaper than the original. The original HF+ costs US$199, but the Discovery is only US$169. So unless you require the two input ports, the HF+ Discovery should be the way to go. Currently the HF+ Discovery is in preorder status, and can be ordered internationally from the manufacturer iTead, or within the US from airspy.us. As far as we can see no expected shipping date has been given yet, but we expect that it would ship soon.

airspy_discovery_1
airspy_discovery_3
airspy_discovery_2
airspy_discovery_4
RTL-SDR For Scale

RTL-SDR For Scale

Loading image... Loading image... Loading image... Loading image... Loading image...

Initial Testing

We were sent a prototype sample of the Airspy Discovery HF+ a few weeks ago. We note that the version we received was an early prototype and does not yet implement the 10 MHz and 17 MHz HF filters.

From our test on real world signals we find that it performs at least as good as the original Airspy HF+, if not better due to the additional filtering. The signals in our area were not strong enough to really overload the original Airspy HF+, so any benefit from the additional filtering may not be too apparent.  Insertion loss from the filters seems to be not noticeable, as we saw no differences to SNR levels between the two units.

In our VHF tests we saw no differences between the two units, but as with HF we note that it would take some fairly strong signals to make a difference.

In a future post we'll follow up with some tests by injecting strong signals into the SDR, and seeing how well it can performs with the additional filtering compared to the original.

TOP: Airspy HF+ Discovery, BOTTOM: Original Airspy HF+
TOP: Airspy HF+ Discovery, BOTTOM: Original Airspy HF+

Conclusion

If you have an HF+ and were still troubled by really strong out of band interferers, the HF+ Discovery might be a good upgrade. Newcomers to SDR looking for high a performance DX SDR for HF and VHF should also strongly consider the HF+ Discovery. The original HF+ is still one of the best low cost DX SDRs we've tested, and the Discovery only makes it better.

As far as we can see regarding the choice between the original HF+ and HF+ Discovery, the only reason to really consider the original HF+ would be if you prefer to have separate HF and VHF antenna ports. The plastic case brings no real disadvantage, and the preselectors improve dynamic range and have no noticeable insertion loss.

Fenu Radio Reviews the Airspy HF+ Discovery

The Airspy HF+ Discovery is a smaller, lighter and improved version of the Airspy HF+ which is an HF and VHF SDR with very high dynamic range. The Discovery builds on the HF+ by adding low loss preselectors. This increases the dynamic range even further, and allows the Discovery to compete with some very high end (and much more expensive) SDRs.

Currently the Airspy HF+ Discovery is available for preorder for USD$169. There have been a few delays in getting the unit out, but it appears that the Airspy team will begin shipping very soon.

Over on his blog, radio product reviewer Fenu-Radio has received an Airspy HF+ Discovery, and has given it an in depth review and put it through several real world tests. Fenu-Radio notes that while the initial prototype unit that he received had some issues with overload above 19 MHz, the latest production version has completely remedied this, resulting in impressive performance that competes favorably with the high end USD$2000 Winradio G33DDC software defined radio.

In the review Fenu-Radio compares the Discovery against the G33DDC and finds absolutely no difference in performance between the two. In the review he's also uploaded several audio comparison samples so that you can hear for yourself how identical the two radios are.

Fenu-Radio's Airspy HF+ Discovery Review Unit
Fenu-Radio's Airspy HF+ Discovery Review Unit

A Low Cost 2.4 GHz Downconverter from off the Shelf Dev Boards

Over on GitHub Ian Wraith has released his design and microcontroller code for a low cost 2.4 GHz downconverter circuit. A downconverter is a hardware device that shifts the signals that it receives into a lower frequency band. This is useful in the case of RTL-SDRs and Airspy SDRs, as their maximum frequency range is only 1.7 GHz. Ian's 2.4 GHz downconverter reduces those 2.4 GHz signals down to 1 GHz, which can then be received with his Airspy.

Rather than designing a circuit from scratch, Ian's design makes use of several very cheap Chinese evaluation/development boards that he found on eBay. It costs of a mixer board, oscillator board, and an STM32 development board for controlling the oscillator board via SPI. The whole set of hardware cost him less than £30 (~37 USD).

After spending some time working through the difficulties in programming the SPI interface on the STM32 board, he was able to get the downconverter circuit fully working. He notes that he's been able to receive WiFi, Zigbee, Bluetooth and ISM band signals at 2.4 GHz, as well as 3G and 4G cellular signals at 2.6 GHz.

Ian Wraith's Downconverter consisting of three off the shelf cheap Chinese eBay boards.
Ian Wraith's Downconverter consisting of three off the shelf cheap Chinese eBay boards.

SignalsEverywhere: Common Modulations Tutorial Video

This week on the SignalsEverywhere YouTube channel, host Corrosive gives us a tutorial on common modulations that you'll see on your software defined radio. His tutorial covers Amplitude Modulation (AM), Frequency Modulation (FM), Single Side Band (SSB) and Conintuous Wave (CW) modulations. In the video he shows what they look like and how to select the correct mode and bandwidth settings in SDR#. Corrosive uses an Airspy in the video, but the same concepts are valid for any SDR, like the RTL-SDR.

If you're new to SDR then this is a great introductory video to watch and learn from.

AM FM SSB and CW | Common Modulation You'll See on SDR

SignalsEverywhere: What SDR To Buy? Choose the Right one For You

Over on his YouTube channel SignalsEverywhere, Corrosive has just released a new video titled "Software Defined Radio Introduction | What SDR To Buy? | Choose the Right one For You". The video is an introduction to low cost software defined radios and could be useful if you're wondering which SDR you should purchase.

The video includes a brief overview of the Airspy, KerberosSDR, PlutoSDR, LimeSDR Mini, HackRF, SDRplay RSPduo and various RTL-SDR dongles. In addition to the hardware itself Corrosive also discusses the compatible software available for each SDR.

Software Defined Radio Introduction | What SDR To Buy? | Choose the Right one For You

Tracking Tagged Orangutans in the Bornean Jungle with Drones, GNU Radio and an Airspy Mini

Due to various human activities causing the environmental destruction of it's habitat, the Orangutan is now classed as a critically endangered species. In addition to being endangered, Orangutans face another problem in that they are often captured and sold as pets due to their intelligence and cuteness.

To combat these problems, NGOs, charities and rescue centers have been using RF tags on rehabilitated Orangutans that have released back into the wild. The RF tag regularly transmits a data-less pulse at VHF frequencies which is then typically tracked using direction finding equipment such as a directional Yagi antenna. The range is only approximately 200-400m. 

In order to try and alleviate the range issue Dirk Gorissen has been working on creating a drone based system that could detect the VHF transmission and create a heatmap of Orangutan positions. The first iteration of his system uses an RTL-SDR, Odroid and lightweight loop antenna. A simple Python script then monitors the spectrum and logs the drones current location, altitude, speed and heading when a pulse is detected. Tests confirmed that the signal was able to be detected from the sky, but unfortunately the drone was eventually crashed and lost before it could be properly used.

In his second try a few years later, Dirk used a larger drone and switched SDRs to an Airspy Mini with preamp. The pulse detection code was also improved by using GNU Radio to create a DSP algorithm combining peak detection, cross correlation with a known template of the signal, and a phase locked loop. Visualization and data transfer is achieved through react.js and a Flask web server running on the drones WiFi hotspot. This time with the new drone and system Dirk was able to successfully detect and locate several Orangutan's on various flights, despite noting that some RF tags appeared to be glitchy.

Orangutan Detected with Drone, Airspy Mini and GNU Radio.
Orangutan Detected with Drone, Airspy Mini and GNU Radio.
Drone used in the experiment
Drone used in the experiment

Airspy HF+ Discovery Now Available for Preorder + Brief Initial Review

The Airspy team have recently announced the release of their new "Airspy HF+ Discovery". The Discovery is a smaller, lighter and improved version of the Airspy HF+. The frequency range, bandwidth and bit depth and specs all remain the same, but there are some improvements to the dynamic range due to the addition of preselectors. The original Airspy HF+ was released back in mid-2017 and it still is in our opinion one of the best low cost HF DX SDRs because of its very high dynamic range design, so strong interfering signals are not much of a problem. We have a previous review of the Airspy HF+ available here were we compare it against a number of other HF SDRs.

Although the dynamic range was very high, some users reported that extremely strong signals could still desensitize the HF+. So in response the new HF+ Discovery improves on the dynamic range even further by including multiple low insertion loss preselectors built in to the front end. For HF there is are 0, 5, 10 or 17 MHz High Pass Filter corners, and 5 or 31 MHz Low Pass filter corners in series which can provide filtering for a number of bands. For VHF, there are 60-118 MHz and 118-260 MHz filters. The designer boasts that the inclusion of these filters bring the HF+ Discovery up to the performance level of expensive new SDR based ham rigs like the Icom 7300.

Airspy HF+ Discovery Block Diagram
Airspy HF+ Discovery Block Diagram

As for the physical design, the enclosure is now much smaller (60 x 45 x 10 mm) and made from plastic. These changes make the SDR very light at only 28 grams (1 oz). Although the case is plastic, local interference doesn't seem to be an issue as the PCB itself is fully shielded. The plastic case is rugged and will withstand a beating. Also, the original HF+ had two input ports, one for HF and one for VHF whereas the HF+ Discovery only has one input port which covers all bands.

Despite the improvements and additional circuitry, the Airspy HF+ Discovery is actually priced cheaper than the original. The original HF+ costs US$199, but the Discovery is only US$169. So unless you require the two input ports, the HF+ Discovery should be the way to go. Currently the HF+ Discovery is in preorder status, and can be ordered internationally from the manufacturer iTead, or within the US from airspy.us. As far as we can see no expected shipping date has been given yet, but we expect that it would ship soon.

airspy_discovery_1
airspy_discovery_3
airspy_discovery_2
airspy_discovery_4
RTL-SDR For Scale

RTL-SDR For Scale

Loading image... Loading image... Loading image... Loading image... Loading image...

Initial Testing

We were sent a prototype sample of the Airspy Discovery HF+ a few weeks ago. We note that the version we received was an early prototype and does not yet implement the 10 MHz and 17 MHz HF filters.

From our test on real world signals we find that it performs at least as good as the original Airspy HF+, if not better due to the additional filtering. The signals in our area were not strong enough to really overload the original Airspy HF+, so any benefit from the additional filtering may not be too apparent.  Insertion loss from the filters seems to be not noticeable, as we saw no differences to SNR levels between the two units.

In our VHF tests we saw no differences between the two units, but as with HF we note that it would take some fairly strong signals to make a difference.

In a future post we'll follow up with some tests by injecting strong signals into the SDR, and seeing how well it can performs with the additional filtering compared to the original.

TOP: Airspy HF+ Discovery, BOTTOM: Original Airspy HF+
TOP: Airspy HF+ Discovery, BOTTOM: Original Airspy HF+

Conclusion

If you have an HF+ and were still troubled by really strong out of band interferers, the HF+ Discovery might be a good upgrade. Newcomers to SDR looking for high a performance DX SDR for HF and VHF should also strongly consider the HF+ Discovery. The original HF+ is still one of the best low cost DX SDRs we've tested, and the Discovery only makes it better.

As far as we can see regarding the choice between the original HF+ and HF+ Discovery, the only reason to really consider the original HF+ would be if you prefer to have separate HF and VHF antenna ports. The plastic case brings no real disadvantage, and the preselectors improve dynamic range and have no noticeable insertion loss.

Receiving Voice Communications From the Soyuz MS-12 Expedition to the ISS

On March 14 the Soyuz MS-12 spacecraft mission was launched and this carried three astronauts to the International Space Station (ISS). Back on the ground, YouTube creator Tysonpower was able to receive the voice communications of Russian cosmonaut Alexey Ovchinin while the Soyuz spacecraft was approaching the ISS. To do this he used an Airspy SDR and home made QFH antenna, and he notes that reception could just have easily been achieved with an RTL-SDR.

Tysonpower has uploaded a video explaining what he received along with a subtitled and translated recording of the communication. More information also available on his blog post.

[EN subs] Empfang von Cosmonaut Alexey Ovchinin im Soyuz MS-12

XRIT Decoder Updated: Improved Image Quality and IR Enhancements

USA-Satcom is the programmer of XRIT Decoder, which is a popular (paid) Windows decoding application for GOES weather satellites. With a WiFi grid dish antenna, LNA and SDRplay, Airspy or even an RTL-SDR, high resolution full disk images of the earth can be downloaded from these geosynchronous satellites. Browse through our previous GOES posts for ideas and various tutorials about setting up a receiver.

Recently, XRIT decoder has been updated and now has improved image quality and an antenna alignment helper tool. A further update also adds improved processing for IR images. Over on the SDRplay forums RSP2user has been testing the updates and writes:

USA- Satcom has just released version 1.4.6985 of the XRIT Decoder software package. New features include:

1) Improved image clarity.

2) An antenna Align Mode feature.
3) And a Viterbi and Eb/No (Energy per Bit to Noise Power Spectral Density Ratio akanormalized SNR) graph over time feature. 

The improved image clarity reduces image artifacts at the Earth-space boundary of the image and improves the overall aesthetics of the colorization of the full disk images. The images are quite amazing. The resolution is far better than what can be shown here due to image size limitations for this site. Below is a full disk GOES 16 image from February 17, 2019 and a corresponding zoomed in portion to get an idea of the resolution and clarity (the actual full disk images are approximately 40MB PNG images each which are much greater resolution than the below image)

The antenna Align Mode is a great new feature that allows users to view the Signal Quality, Viterbi FEC, and Eb/No from a distance using large numeric values. This mode enables users to better view these values when fine tuning adjustments to GOES receiving antennas. The Eb/No and Viterbi graphing enables users to see how well their receiving system is doing throughout the day (e.g., over temperature and while the sun is in alignment with the receiving path).

GOES 16 Received by RSP2User
GOES 16 Received by RSP2User

More updates from USA-Satcom to the XRIT Decoder software with a new patch from today. The XRIT file manager now provides IR image enhancements for GOES Bands 8 and 13. Here are some examples:

G16 CH13 & G16 Band8 Enhancements . Images received by RSP2user.
G16 CH13 & G16 Band8 Enhancements . Images received by RSP2user.

See the post on the SDRplay forums for further details, higher res images and the full update history.