Category: Amateur Radio

Setting up a Raspberry Pi for Ham Radio with RTL-SDR

Over on his blog F4GOH has posted a rather comprehensive tutorial consisting of seven PDF documents showing how he's set up his Raspberry Pi for ham radio and other RF projects. The PDF's essentially form a book that starts with the very basics like preparing an OS for the Pi SD Card, powering on the Pi, finding the IP address and connecting to it with SSH or VNC.

The tutorials move on to installing and using various ham radio programs like Fldigi, WSJT-X , GQRX, GNU Radio, before going on to teach some more Linux concepts. The final two PDF tutorials cover the installation and use of OpenWebRX for remote RTL-SDR use, R2Cloud for decoding weather satellites, and finally Radiosonde Auto RX for decoding radiosonde's on weather balloons.

[Also seen on Hackaday]

Raspberry Pi for Ham Radio

Comparing Shortwave Antennas with an RTL-SDR and FT8 Monitoring

Eric had an inverted L and T3FD antenna set up in his backyard and he wanted to test both at the same time to see which received HF better overall. Rather than relying on subjective 'by ear' measurements he decided to use the digital FT8 mode as his comparison signal. FT8 is quite useful for this purpose as the decoded data includes a calculated signal-to-noise (SNR) reading which is a non subjective measure that can be used for comparisons. It also contains information about the location of the signal which can be used for determining the DX capability of the antenna. 

To perform the comparison he used two or our RTL-SDR Blog V3 dongles running in direct sampling mode, and also added an additional low pass filter to prevent excessively strong TV and FM signals from overloading the input. Each antenna is connected to it's own RTL-SDR, and a modified version of GQRX with remote UDP control is used to switch between multiple FT8 frequencies so that multiple bands can be covered in the experiment. WSJT-X is used for decoding the FT8 packets.

After logging SNR values for several days he was able to plot and compare the number of packets received by each antenna, the maximum distance received by each antenna. His results showed that his inverted L antenna was best in both regards. He then performed a relative comparison with the SNR readings and found that the inverted L performed best apart from at 14 MHz, where the T3FD performed better.

In further tests he also compared the antennas on which signal headings they were receiving best from. The results showed that Erics inverted L was receiving best from one direction only, whereas the T3FD received signals from more headings.

Eric's post includes full instructions on the software setup and also Python code which can be used to replicate his experiments. We think that this is a great way to objectively compare two types of antennas.

Antenna directionality measurements via FT8 received headings

Using a PlutoSDR and Mixer to Transmit 70cm DATV to a 23cm Satellite Receiver

Over on her YouTube channel, SignalsEverywhere, Sarah has uploaded a new video showing how she uses a PlutoSDR, HackRF and mixer to transmit DVB-S digital amateur TV to a standard satellite set top box. In this video the idea is to get a little more range by using the PlutoSDR to transmit in the 70cm band, then upconverting that to the 23cm band right at the satellite receiver. Transmitting at the lower frequency yields a higher power output from the PlutoSDR and less cable loss. The mixer consists of a passive mixer chip and a HackRF is used as the mixer LO signal source as a temporary test solution.

Digital TV Transmitter 70cm ATV to 23cm Satellite Receiver Using a Mixer/Upconverter

TechMinds: Using Public Online SDRs without SDR Hardware

This weeks video on the TechMinds channel explores the various online web SDRs that are available to access for free. Accessing these online SDRs does not require any hardware apart from a PC and internet connection, although of course you are then receiving signals from a different location to yourself. 

In the video he shows how to access the SDR# Spy Server Network which mostly consists of Airpsy and RTL-SDR units, the SDR-Console V3 Server network which consists of a wide array of different SDRs, the browser based WebSDR network which is mostly soundcard based SDRs but also RTL-SDR and other SDRs, and finally the KiwiSDR network which is made up of KiwiSDRs.

Using Software Defined Radio Without SDR Hardware - WebSDR

RSGB Talk: How To Check and Report VDSL RFI with an SDR in the UK

Back in April we posted a video from Tech Minds where he showed us how to use special software combined with an SDRplay RSPdx to detect and report VDSL interference on the HF bands. VDSL or Very High Speed Digital Subscriber Line is an internet connection technology that runs over old copper phone wires allowing for a fast broadband connection. The frequencies used by VDSL are between 25 kHz to 12 MHz, and for VDSL2 up to 30 MHz. Unfortunately the frequencies used can result in high amounts of radio interference from RFI radiating from the copper phone lines which is a major problem for HF amateurs and short wave listeners.

Recently John Rogers (M0JAV) presented a talk via the UK amateur radio organization RSGB. In the talk he explains how VDSL works, why it causes RFI and how to check for VDSL RFI using an SDR and the Lelantos software. He also shows how he drove around with a magnetic loop antenna looking for VDSL RFI sources in his neighbourhood. He then goes on to call out for more volunteers in the UK to submit RFI reports to Ofcom as they responded that they won't do anything about the interference unless there are more complaints. 

The RSGB EMC Committee (EMCC) has been investigating VDSL interference since 2014. As the number of installations has risen to over 30M the interference level at amateur radio stations has also increased. The majority of radio amateurs are now impacted by this problem.

In the May 2020 RadCom we outlined how to detect and estimate the level of interference. This can be done by inspection of an SDR spectrum display or by taking a recording and then using a SW package—developed by Martin Sach of the EMCC—which identifies the VDSL signature in the recording and shows how many different VDSL lines are causing the problem and what their relative strengths are.

This talk demonstrates what to look for and how to use the tools to find out if you have a problem yourselves. We hope this will help you respond to our call for action and complain to Ofcom about the level of RFI you are subjected to.

John Rogers, M0JAV
Chair EMCC

RSGB Tonight @ 8 - How to check for VDSL RFI with John Rogers, M0JAV

The Silphase R1 SDR Receiver

Thanks to Thomas' SWLing Blog for bringing to attention the Silphase R1 SDR receiver. This is an upcoming high performance HF SDR receiver being manufactured in the EU by a Polish company called Silphase. The R1 appears to be targeting premium SWLer customers with a price of US$1199. However, they note that by the end of 2020 they will have a 25W transceiver option, and later a 100W transceiver option. The SDR is currently available for preorder only and the sign up form can be found at the bottom of their website.

The Silphase R1 comes with a 5" touch screen that shows a spectrum display, has dual VFO's, four speakers and a metal alloy enclosure. It also comes with a built in telescopic antenna, but external antennas can be connected with the F connector. The tuning range is just the HF bands from 0.1 - 30 MHz and the ADC resolution is 16 bits.

Rendering of the upcoming Silphase R1 HF SWLing SDR

TechMinds: Building a 3D Printed 2.4 GHz Dual Feed Helix for QO-100

The Bullseye LNB that we have in our store is great for receiving the QO-100 amateur geostationary radio satellite which is available in some parts of the world. However it cannot be used to transmit to the satellite. Over on his YouTube channel Tech Minds shows us how to build a transmit helix antenna that connects to the Bullseye or other suitable LNB, resulting in a dual feed antenna.

The antenna that was built is based on DO8PAT's "Ice Cone Feed" design. The design requires some 3D printed parts for the mount and housing, as well as a copper wire helix, metal reflector and copper matching strip. The Bullseye fits onto the back of the helix mount. Once mounted on a dish Tech Minds shows that he was able to make contact with a friend via the QO-100 satellite with good signal strength.

2.4 GHz Dual Feed Helix Antenna For QO100

Step-by-step Guide to Creating a GNU Radio Based QO-100 SSB Receiver

Thank you to M Khanfar for submitting his video that shows a step-by-step tutorial on building your own SSB receiver in Windows GNU Radio for QO-100 satellite reception.  His tutorial includes adding several tuning sliders in the GNU Radio GUI as well.

QO-100 / Es'hail-2 is a geostationary satellite at at 25.5°E (covering Africa, Europe, the Middle East, India, eastern Brazil and the west half of Russia/Asia) providing broadcasting services. However, as a bonus it has allowed amateur radio operators to use a spare transponder. Uplink is at 2.4 GHz and downlink is at 10.5 GHz. We note that we are selling a "bullseye" LNB in our store which allows most SDR dongles to be able to receive the signal with high frequency accuracy.

GNU-RADIO QO-100 SSB Receiver