Category: Applications

Tech Minds: Demonstrating RTL_433 Running on ESP32 Devices

Earlier in the month we posted about how rtl_433 has been ported to ESP32 devices that are combined with CC1101 or SC127X transceiver chips, such as the low cost LILYGO LoRa 32 boards available on Aliexpress.

Over on YouTube Matt from the Tech Minds channel has uploaded a video showing how to set up rtl_433 on an ESP32 device, and how to set it up with a home automation service like Home Assistant, Node Red or OpenHAB via an MQTT broker.

RTL 433 ON ESP32 DEVICE - MQTT HOME ASSISTANT

AirNav Systems Launch AIS Aggregator ShipXplorer.com

AirNav Systems are behind the RadarBox ADS-B tracking aggregator, one of several companies that use data obtained by volunteers running RTL-SDR dongles to collect ADS-B flight data from all over the world.

Recently they've launched a new project called ShipXplorer.com which is a marine AIS aggregation service. Like RadarBox, ShipXplorer relies on volunteers running receiver stations all around the world. AIS is an acronym for 'Automatic Identification System', and in a similar way to ADS-B on aircraft, AIS allows the real time tracking of marine vessel positions. 

To help enthusiasts with AIS reception, AirNav have also launched an AIS optimized RTL-SDR dongle. At the moment we're not exactly sure how this dongle works, as it advertises NMEA output with no add-on programs required. So this may imply it has some onboard processing. But reviews imply that it is just an RTL-SDR dongle with TCXO. We are currently inquiring with AirNav Systems. UPDATE: We have clarified with AirNav and confirmed that the dongle is an RTL-SDR dongle with AIS modifications (LNA & TCXO). There is no onboard processing and the advertising text was an error. 

AirNav Systems write:

Some great news on a new product we've been developing for the last year and that's just been released.
 
As you know our company has been in the industry for over 20 years, offering innovative and unique flight (RadarBox) tracking solutions. We supply multi-million USD companies with reliable/accurate worldwide real-time flight information and the RadarBox.com portal has now over 1.3 million accounts registered.

I'm reaching out to you to introduce you to AirNav System's ship tracker, ShipXplorer.com, which we launched a few months ago 
 
About ShipXplorer.com:
ShipXplorer is a vessel tracking website that tracks global vessel movements in real time. ShipXplorer was developed to cater to the increasing navigational and tracking challenges faced by the maritime industry. In addition to offering professional maritime tracking solutions, the platform is also available for public use, with features and services specially developed for the burgeoning maritime enthusiast and vessel spotting community.
 
ShipXplorer.com
ShipXplorer.com Screenshot
ShipXplorer Screenshot
ShipXplorer Screenshot
ShipXplorer.com Screenshot
ShipXplorer.com Screenshot
In addition to our recently launched ship tracking portal, we have a variety of AIS hardware, such as dongles and AIS antennas. 
 
ShipXplorer AIS Dongle:
This high-performance dual channel AIS USB Receiver decodes AIS transmissions and enables the reception of AIS messages and data directly onto devices such as a Raspberry Pi or Laptop.
ShipXplorer AIS Optimized RTL-SDR Dongle
ShipXplorer AIS Optimized RTL-SDR Dongle

ShipXplorer AIS Antenna:
ShipXplorer's omnidirectional AIS Antenna is optimized for long-range, dual channel (Channel A and B) 162 MHz VHF reception. It also ships with a 30 ft cable (SMA connector). Meant for outdoor use, this antenna is built with a fiberglass & aluminum alloy and can weather prolonged exposure to the elements.

ShipXplorer AIS Antenna
ShipXplorer AIS Antenna
ShipXplorer Sea Range AIS Receiver:
SeaRange is ShipXplorer's newest 162 MHz, dual channel, AIS receiver. This brand-new model includes an added filter and an inbuilt amplifier designed to optimize AIS reception on both 162.025 MHz & 161.975 MHz frequencies.
And we are currently working on expanding our AIS coverage globally. 
ShipXplorer Sea Range AIS Receiver
ShipXplorer Sea Range AIS Receiver
ShipXplorer website: https://www.shipxplorer.com

ShipXplorer hardware: https://www.shipxplorer.com/store

 
Sharing AIS Data with ShipXplorer: 
 
And recently, we've also introduced the possibility of sharing AIS data with us using the AIS Dispatcher:
 
Some of the benefits feeders receive for sharing data with ShipXplorer include: 
  1. Free Business Account Access (benefit from all possible website features for free, while sharing data with ShipXplorer) 
  2. Dedicated Whatsapp, Facebook & Telegram Groups
  3. Access to ShipXplorer' MyStation page where users can monitor all traffic received by their own units.

rtl_433 ported to ESP32 microcontrollers with CC1101 or SX127X Transceiver Chips

Receiving wireless sensors operating in the unlicensed ISM band has been made almost universal with rtl_433 and RTL-SDRs. However, recently rtl_433 has been ported over for use on ESP32 microcontrollers that are combined with CC1101 or SC127X transceiver chips.

PCB boards that combine these two chips can be found cheaply on Aliexpress as LoRa boards, under the name "LILYGO LoRa 32". If you are unaware, ESP32 chips cheaply combine a WiFi and Bluetooth modem with a microcontroller that is capable of hosting a webserver. CC1101 and SC127X are low cost low power hardware transceiver chips made for IOT devices. We've posted about LILYGO boards in the past as they've been used with interesting projects such as Meshtastic, and for weather balloon tracking.

This project could be useful for home automation as a module has been made available for openMQTTGateway. Instead of dedicating a more powerful Raspberry Pi and RTL-SDR, you can now dedicate a much cheaper and much lower power device to the task. 

[Also seen on Hackaday.]

RTL_433 running on a LILYGO LoRa V2 Board
RTL_433 running on a LILYGO LoRa V2 Board

YouTube Satellite Decoding Series

Over on YouTube @dereksgc has been putting together a comprehensive video series on weather, amateur and other satellite reception. His series starts with receiving images from NOAA APT satellites, then Meteor M2, as then goes on to talk about low cost V-Dipole satellite antennas, how satellite dishes work, and recently how to use Ku-band LNBs with a satellite dish.

If you're getting started with RTL-SDR and satellite reception, this video series may be a good introduction for you.

SIGpi: A Signal Intelligence Focused Linux “Go-Kit”

Thank you to Joe NE2Z for sharing his Linux distribution called SIGpi. SIGpi is an installable Linux distribution for Ubuntu and Raspberry Pi 3/4 that focuses on providing multiple open source SDR programs that can be used for signal intelligence. Support for RTL-SDR and other SDRs is included.

The distro is actually created via a bash script that installs all the programs automatically on a fresh OS install. It also provides a system for easily upgrading software as developers work on them.

For a full list of the software that comes with SIGpi check out their Wiki.

SIGpi is a "go-kit" for Signal Intelligence (SIGINT) enthusiasts with emphasis on capabilities in the VHF, UHF, and SHF spectrum. For completeness, HF spectrum related software is included for optional install. This (bash) shell script builds SIGINT tools on the following platforms:

  • Raspberry Pi4 4GB RAM or Raspberry Pi 400 with 32GB microSD card running Raspberry Pi OS Full (64-bit)
  • Ubuntu 22.04 LTS on arm64 and amd64

A headless server only install (Node Install) can be performed on Raspberry Pi3 B+ with 32GB microSD card running Raspberry Pi OS Full (64-bit)

A possible hardware setup with SIGpi
A possible hardware setup with SIGpi

SDRangel Now Available on Android: Mobile ADS-B, AIS, APT, Digital Voice, POCSAG, APRS, RS41 Radiosonde Decoders

SDRangel is a free open source software defined radio program that is compatible with many SDRs, including RTL-SDRs. SDRAngel is set apart from other programs because of it's huge swath of built in demodulators and decoders.

Thank you to reader Jon for writing in and noting that SDRangel has recently been released for Android as a free Google Play download. This is an amazing development that could open up many doors into portable decoding setups as the Android version supports almost every decoder implemented on the desktop version. Jon writes:

It includes most of the functionality of the desktop version of SDRangel, including:

  • AM, FM, SSB, Broadcast FM and DAB, AIS, ADS-B, Digital Voice (DMR, dPMR, D-Star, FreeDV), Video (DVB-S, DVB-S2, NTSC, PAL), VOR, LoRa, M17, Packet (AX.25), Pager (POCSAG), Radiosonde (RS41), Time signal (MSF, DCF77, TDF and WWVB) modems.
  • RTL SDR, Airspy, Airspy HF, LimeSDR, HackRF and SDRplay support via USB OTG as well as networked SDRs
  • 2D and 3D signal analysis in both time and frequency domain with statistical measurements of SNR, THD, THD+N, SINAD, SFDR and channel power
  • Satellite tracker, star tracker, maps and rotator controller

It should work on Android 6 and up. It’s a straight port of the desktop application, so although it will run on a phone, probably best used on a large tablet with a stylus or mouse.

SDRangel on Android
SDRangel on Android

The SDRSharp ListenInfo Plugin

SDR# is a popular software defined radio program that is compatible with RTL-SDR, Airspy and several other SDR devices. One feature is the ability for third parties to develop plugins for the software.

One recently released plugin that is gaining popularity is the "ListenInfo" plugin. The ListenInfo plugin uses a publicly available database of shortwave stations to display frequency station info for the LW, MW, SW bands within the SDR# spectrum display.

If you've ever been browsing the shortwave bands and wondered where a station is broadcasting from, and what it's transit power, beam direction and transmit schedule are like, then this will be a very useful plugin for you.

SDR# ListenInfo Plugin
SDR# ListenInfo Plugin

AntRunner: Testing A Low Cost Satellite Antenna Rotator

Weather satellites that transmit HRPT give you high resolution uncompressed images of the earth. With an SDR, L-band feed, 60 cm or larger satellite dish and LNA+filter these images can be received by anyone. Derek OK9SGC has the definitive HRPT reception tutorial available here. However, as these are low earth orbit satellites, the user is required to find a way to track the satellite as it moves across the sky. With some skill and experience, hand tracking can work, but a motorized solution is really what is desired. Other applications such as ham satellite communications as well as radio astronomy projects may also benefit from motorized tracking .

Antenna rotators that rotate in azimuth and elevation can be used to track satellites moving across the sky. The problem is that antenna rotators are typically very expensive, or are a major task to DIY, involving circuit construction and 3D printing of parts.

Recently on Tindie we came across the "AntRunner" which is a relatively low cost portable antenna rotator from China coming in at US$325 with free shipping to most countries (VAT is added for the EU as $50 in shipping fees).

AntRunner is based on two geared stepper motors, a motor controller PCB and an open frame. AntRunners code is open source, as well as some partial hardware schematics.

It can be interfaced via a USB serial connection or through WiFi via it's onboard ESP32 chip, and it relies on the Hamlib 'rotctl' software library running on either the controlling PC, or another intermediary device like a Raspberry Pi. Once setup, software like Gpredict on the PC or Look4Sat on Android devices can be used to control the rotator.

The AntRunner: Low cost antenna rotator
The AntRunner: Low cost antenna rotator

AntRunner Tests

We ordered an AntRunner for testing with our own funds. Our setup involved a USB connection from the AntRunner to a Raspberry Pi, 12V plug pack and a 60cm dish. We installed hamlib on the Raspberry Pi, and used Gpredict (PC) and Look4Sat (Android) on networked devices to send the desired elevation and azimuth commands to hamlib on the Raspberry Pi for particular satellites.

(Note that if you are installing hamlib for the AntRunner, you should do so from source as the packages in Ubuntu 22.04 appear to be out of date. And the older version of hamlib installed via Ubuntu does not support the AntRunner).

Overall the AntRunner works as expected and was easily able to follow HRPT satellites across the sky. It was also great for easily pointing and switching between geostationary satellites like GOES and GK-2A. It easily held and moved a 60cm dish and feed which weighs about 3 kg. The specs of the AntRunner indicate 5 kg max load (although the GitHub specs note 10kg), so it should be able to hold larger diameter dishes as well.  

However we did have an issue with the advertised WiFi connection which is an alternative to the USB serial connection. When connected to WiFi the connection would always drop after a single movement command was sent, and it would never reconnect unless rebooted twice. For this reason we abandoned WiFi and only used the USB serial connection, and communicated wirelessly via the Raspberry Pi. There is also a WiFi web interface available for testing movement commands and setting up the WiFi connection, but it is only in Chinese.

It's possible that RF noise from the motors was causing the WiFi disconnection, but on the frequencies that L-band satellites operate at, we did not notice any motor interference.

The AntRunner is advertised as a portable rotator, so that means it is not suitable for use in poor weather as it has no cover to protect the motor circuit board and motors themselves from rain. However, it is certainly small and light enough to be portable. You just need a portable 12V power supply as well. 

Another issue is that when power is lost, the motors will spin freely, resulting in the antenna coming crashing down fast. So care must be taken when powering down with someone there to hold the antenna. The user is also required to physically hold the antenna level at 0 degrees elevation before powering up the AntRunner, so that it will reference 0 degrees elevation. Once powered the antenna holds in place.

There are also no limit switches on the device, so if an erroneous command is sent, it could send the motors into a position that could damage something.

AntRunner (Image from Tindie)
AntRunner (Image from Tindie) (NOTE: The tripod stand is not included)

Conclusion

Overall if you want something cheap and pretty much ready to use out of the box for tracking HRPT or other LEO satellites, the AntRunner is a good budget choice if you intend to only setup temporary stations. It is not suitable for permanent satellite receiver setups, at least not without some modifications.

A similar product is the SATRAN MK3 which was a 3D printed kit costing 175 Euros + shipping, but unfortunately this product appears to no longer be sold.

The ultimate in low cost rotators is probably the SatNOGS V3 rotator, but as mentioned this is a DIY project that requires a significant time commitment as it involves 3D printing multiple parts, sourcing components, building PCBs and constructing everything together. We have found one company offering a SatNOGs hardware kit, containing all of the parts required for US$445.

A commercial option might be the Yaesu G-5500DC which goes for US$759.95 on HRO, however you also need the GS-232 Rotator Computer Controller for computer control which is an additional US$589.95. Update: We've been informed that there are also cheaper third party computer controllers for Yaesu rotators, such as the CSN Technologies S.A.T Rotator Controller which sells for US$278.