Tagged: graves radar

SDRAngel Features Overview: ADS-B, APT, DVB-S, DAB+, AIS, VOR, APRS, and many more built-in apps

SDRAngel is a general purpose software defined radio program that is compatible with most SDRs including the RTL-SDR. We've posted about it several times before on the blog, however we did not realize how much progress has occurred with developing various built in plugins and decoders for it.

Thanks to Jon for writing in and sharing with us a demonstration video that the SDRAngel team have released on their YouTube channel. From the video we can see that SDRAngel now comes stock with a whole host of built in decoders and apps for various radio applications making it close to an all-in-one SDR platform. The built in applications include:

  • ADS-B Decoder: Decodes aircraft ADS-B data and plots aircraft positions on a map
  • NOAA APT Decoder: Decodes NOAA weather satellite images (in black and white only)
  • DVB-S: Decodes and plays Digital TV DVB-S and DVB-S2 video
  • AIS: Decodes marine AIS data and plots vessel positions on a map
  • VOR: Decodes VOR aircraft navigational beacons, and plots bearing lines on a map, allowing you to determine your receivers position.
  • DAB+: Decodes and plays DAB digital audio signals
  • Radio Astronomy Hydrogen Line: With an appropriate radio telescope connected to the SDR, integrates and displays the Hydrogen Line FFT with various settings, and a map of the galaxy showing where your dish is pointing. Can also control a dish rotator.
  • Radio Astronomy Solar Observations: Similar to the Hydrogen line app, allows you to make solar measurements.
  • Broadcast FM: Decoding and playback. Includes RDS decoding.
  • Noise Figure Measurements: Together with a noise source you can measure the noise figure of a SDR.
  • Airband Voice: Receive multiple Airband channels simultaneously
  • Graves Radar Tracker: For Europeans, track a satellite and watch for reflections in the spectrum from the French Graves space radar. 
  • Radio Clocks: Receive and decode accurate time from radio clocks such as MSF, DCF77, TDF and WWVB.
  • APRS: Decode APRS data, and plot APRS locations and moving APRS enabled vehicles on a map with speed plot.
  • Pagers: Decode POCSAG pagers
  • APRS/AX.25 Satellite: Decode APRS messages from the ISS and NO-84 satellites, via the built in decoder and satellite tracker.
  • Channel Analyzer: Analyze signals in the frequency and time domains
  • QSO Digital and Analog Voice: Decode digital and analog voice. Digital voice handled by the built in DSD demodulator, and includes DMR, dPMR and D-Star.
  • Beacons: Monitor propagation via amateur radio beacons, and plot them on a map.

We note that the video doesn't show the following additional features such as an analog TV decoder, the SDRAngel "ChirpChat" text mode, a FreeDV decoder and several other features.

Starlink GRAVES Radar Reflections Received with SDR

Over on YouTube Jan de Jong who is based in Germany has posted a short slide show video showing that he received reflections of the GRAVES space radar from the new Starlink satellites.

Starlink is a SpaceX run satellite constellation that is slowly being launched in order to provide worldwide satellite internet access. The last launch was on 11 November 2019. Typically multiple satellites are launched at once, and they follow each other closely in a line, slowly spreading out.

The GRAVES space radar is a powerful radar based in France that is used to track satellites. If you are not too far away from France and within the GRAVES radar footprint you can point an antenna at the sky, and tune to the GRAVES radar frequency of 143.05 MHz with an RTL-SDR or any other SDR. You might then receive the reflections of this radar signal coming from satellites passing overhead. GRAVES has also been used for meteor scatter detection.

As the 60 and more satellites from Starlink 2 pass over the Graves radar signal they reflect a vertical track on the HROFFT radar image from the 143.05Mhz signal. In the first images the satellites are all still very close together, in current passes they have spread already and the display looks almost like rain in the sky on the 1 second radar plot from HROFFT.
Signal received with SDR RTL (SDRuno RSP1A) and 3 element Yagi at 45 degrees towards south

#Starlink-2 Passes over #Graves Radar #ElonMusk

Detecting the Perseids Meteor Shower with an RTL-SDR Passive Radar

Amateur radio hobbyist EB3FRN has made a post on his blog showing how he was able to use an RTL-SDR to act as a passive radar and detect meteors from the Perseids meteor shower. To do this he tuned to 143.050 MHz which is the the frequency of the Graves radar, a French space surveillance radar used to spot satellites and detect their orbits. He then used the Baudline software to record the radar signal scatters which occur when a meteor reflects the Graves radar signal.

Graves Radar - 2013 Perseids Meteor Shower