Over on his YouTube channel, "saveitforparts" has uploaded a video showing how he's modified an old wireless networking dish for L-band HRPT satellite reception. L-band satellites that transmit HRPT are polar orbiting, meaning that some sort of tracking solution is required to point the satellite dish at the sky as the satellite passes over. However, lacking any sort of motorized solution, saveitforparts simply removes the dish mount so that the dish can be manually held and tracked.
He notes that he uses the paid version of the Stellarium app for augmented reality tracking of the satellite. In the past there was a great app called "Satellite AR" which did this for free, however within the past few years it has unfortunately been removed from the Google Play store.
The modifications to the dish involve removing the feed from the satellite and installing a custom built helical feed. He also uses a small handheld PC with RTL-SDR on the rear. However in the end the handheld PC turns out to be problematic so he switches to a laptop.
The dish used in saveitforpart's project is quite similar to our upcoming Discovery Dish crowd funding project, so please check that out if you are interested.
In addition to the last Hydrogen Line radio astronomy post from a few minutes ago, we've also recently seen a post on Hackaday about a research paper (PDF) that describes a Hydrogen Line Radio Telescope made from a cooking Wok, LNA and RTL-SDR dongle.
In the paper Leo W.H. Fung et al of Hong Kong University of Science and Technology uses a 61cm cooking Wok with a custom made dipole feed at the calculated focal point. A filtered LNA sits after the feed, and is connected to an RTL-SDR Blog V3 dongle enclosed within a metal cookie box for additional shielding.
The results show that the Hydrogen Line was indeed detected, and measurements of the galactic rotational velocity were possible.
Again we note that we will soon by crowdfunding for a product called the 'Discovery Dish' that will be fairly similar in size and shape. It is designed for receiving L-band weather satellites, but can also be used as a Hydrogen Line telescope too.
Back in 2020 we released a tutorial about how to use a 2.4 GHz WiFi Grid Dish antenna as a radio telescope which can detect and measure the Hydrogen line emissions in our Milky Way galaxy.
Recently matt from the TechMinds channel has uploaded a video showing this same project but using the NooElec mesh antenna that has been slightly modified for improved performance on 1.7G and 1.4G.
In his video Matt sets up a drift sky scan, where the rotation of the earth drifts the Milky Way through the beamwidth of the dish. Matt uses Stellarium to virtually visualize the live sky map, SDR# and the IF average plugin to average the spectrum, and an Airspy software defined radio.
For the past few years we have been working on finding the best way to help beginners get started with L-band weather satellite reception and basic radio astronomy. We have now come up with a solution that we're calling the 'Discovery Dish' - a lightweight 65 cm diameter dish and active filtered feed set.
Discovery Dish: Simplified system for weather satellite reception and hydrogen line radio astronomy
Discovery Dish is a 65-cm diameter aluminum satellite dish and active filtered feed designed for receiving GOES HRIT, GK-2A LRIT, FengYun LRIT, NOAA HRPT, Metop HRPT, Meteor M2 HRPT and other weather satellites that operate around 1.69 GHz. The dish is designed to weigh under one kilogram, and it splits into three petals, making it easier to ship worldwide. The 1.69 GHz feed contains a built-in LNA right at the feed point, as well as filtering, which means that there is almost no noise figure loss from cables or connectors.
Note that the prototype images show an early non-petalized prototype with rough laser cut wind holes. The production version will obviously be a lot neater looking!
In testing the 65 cm diameter Discovery Dish with it's highly optimized feed has proven effective at receiving the GOES HRIT satellite signal with SatDump. We typically achieve SNR values of 3-4 dB to GOES-18 at 24 deg elevation, and with SatDump an SNR of 1 dB is about the minimum required to receive images so there is plenty of margin. It can also easily receive LRIT from GK-2A and Fengyun, and also when combined with an antenna rotator (or manual hand rotating) can receive HRPT weather satellites too.
The feed on the Discovery Dish consists of a tuned dipole feed with two 5V bias tee powered low noise figure LNAs, and two SAW filters (centered at 1680 MHz with 69 MHz Bandwidth). The feeds are also easily swapped out, and we will also be selling a 1.42 GHz Hydrogen Line feed for those who want to use the dish to get started with radio astronomy. Because the LNA's are right by the feed there is are no losses from feed to LNA, so we can use thinner and easier to handle cabling like RG58 without any loss issues.
In the past we've recommended and relied on 60 x 100 cm WiFi dish antennas for L-Band geosynchronous satellites and Hydrogen Line reception, but at 1.6kg these are too heavy, wide and exert too much torque for light duty antenna rotators to handle. At about half the weight of an equivalent WiFi Dish, the Discovery Dish is much easier to handle.
In the future we hope to be able to provide a low cost light duty antenna rotator that compliments the Discovery Dish. Currently we have tested the Discovery Dish with the AntRunner antenna rotator and found it to be light enough for that rotator to handle, versus a WiFi dish which is far too heavy for it.
Also when compared to a WiFi dish, the Discovery Dish is much easier to optimally set the offset skew as you can simply rotate the feed, versus having to rotate the entire dish at 45 degree increments.
We will also be offering an outdoor electronics enclosure that can be used to house a Raspberry Pi, RTL-SDR and other components like POE splitters. In our tests we have been running an RTL-SDR Blog V4, Orange Pi 5 and POE splitter in the enclosure, and running the SatDump GUI directly on the Orange Pi 5. This results in a neat contained system where only one Ethernet cable needs to be run out to the enclosure.
As we are in pre-launch, pricing is not yet confirmed, but we expect the Discovery Dish to sell for less than US$200 with reasonable worldwide shipping costs. It will be a similar cost to what you would pay if you purchased a WiFi dish, filtered LNA and cabling yourself. Obviously please check what satellites can be seen in your region.
Over on the saveitforparts YouTube channel the creator has uploaded a video showing how he was able to image geosynchronous satellites with his modified motorized RV satellite dish. The idea is to scan the sky using the motorized dish, taking Ku-band RF power readings at each point in the sky. The result forms a heatmap image of satellite transmissions in the sky. For the most part, the satellites detected are TV satellites and they are at known positions in the sky.
However, in one of his recent scans saveitforparts appears to have detected an unknown satellite just outside of the geostationary plane. He goes on to discuss what it could have been, noting that it is most likely to be the AMSC 1 telecommunications satellite.
Recently I spotted a strange "UFO" with my homemade radio telescope / microwave imager. I've used this imager before to spot television satellites in geostationary orbit, but this unknown object was something new to me.
Spoiler Alert: I was able to determine that I'm probably seeing a geosynchronous (but not geostationary) satellite in an inclined / elliptical orbit. Specifically, I think this is the AMSC-1 telecom satellite, which is in a type of orbit designed to cover high latitudes like Northern Canada.
These types of satellites don't seem to show up too often on my telescope / imager setup, since they're not as common and aren't usually aimed directly at my location. This is the first time I've managed to spot one (if that's what I'm seeing), so it seems kind of rare to catch it with this particular equipment!
Folks might also ask if this "UFO" could be the sun or moon producing microwave signals, but those were both off to the left of the scan, not where the mystery signal showed up. It's also probably not a reflection / side lobe / "lens flare", I do get those, but they show up as rings around the main signals, and in fact this mystery signal has its own faint ring around it. Since my dish takes 3-4hrs to do a full scan, this also isn't something fast like a plane or low-orbit satellite as those don't show up on my imager (I'm essentially taking a very long time exposure).
I'm still planning to upgrade / rebuild this mini radiotelescope device in the future, hopefully with more flexibility to pick up different frequencies. That should let me see even more satellites (and maybe other space stuff!).
Mysterious Space Object Detected With DIY Radio Telescope
In his Hackaday.io post (and a post on the main Hackaday blog), Tom Farnell explains how he used two 10-meter tape measures combined with an RTL-SDR Blog V3 software defined radio to receive numbers stations in the HF bands. We want to add that this antenna isn't restricted to just numbers stations, and could receive many different types of shortwave and amateur stations on HF.
In his post Tom explains what numbers stations are and why they are interesting. In brief, a numbers station is a radio broadcast of a voice saying a bunch of numbers continuously. These stations are known to be espionage related, containing some sort of coded message for international spies to decode.
Tom goes on to show how the antenna is constructed. As HF antennas need to be long to get the best reception, Tom uses the long metal tape measure and attached it to the included dipole assembly that comes with the RTL-SDR to increase them to an appropriate length.
Can You Pick Up Number Stations With A Tape Measure Antenna ?
Over on his YouTube channel dereksgc has uploaded the next video in his series on satellite reception. In this video he shows how to build a Yagi antenna tuned for 137 MHz, which is great for receiving NOAA APT and Meteor M2-3 LRPT. Note that a Yagi antenna will give you stronger reception compared to a turnstile, QFH or V-Dipole, but as it is a directional antenna you will need to manually point it towards the satellite as it passes over your location.
For Meteor M2-3 LRPT, a Yagi antenna may be beneficial, as it appears this satellite is having some issues with signal strength, due to a possibly defective antenna that did not fully unfold on the satellite.
The Yagi antenna design is a four element design, with one reflector, two directors and one driven dipole element. The physical construction consists of a piece of wood for the boom, brass welding rods for the elements, and a terminal block for the active dipole element. 3D printed handles are added for easy holding and the RTL-SDR and LNA sit directly on top of the boom.
Thank you to Stéfane Perraud, Aram Kebabdjian and team for submitting news that they have recently launched an art project in Lausanne, Switzerland called "Hystérésia". The installation is technical art, which consists of an autonomous satellite receiving station designed to receive beacons from old "zombie" satellites, and then broadcast their signals audibly. A description of the ground station can be seen here.
Zombie or Dead satellites are satellites that are officially decommissioned and powered down, but have unintentionally reactivated. This often happens as over time the batteries on these satellites can undertake a chemical reaction from thousands of solar recharge cycles which eventually results in a short circuit. Hence the satellites reactivate when in sunlight. If you are interested we have an old post on this phenomena back from 2014.
The system is based on an antenna rotator with two Yagi's that tracks the zombie satellites as they pass over the sky. A QFH antenna has also been spotted in their images. Based on the waterfall images, an SDRplay RSP is used as the receiver, and some computing device is used to demodulate the signal into audio. Stefan adds:
Technically we are using a double yagi 137 and 145 plus a 777 antenna from diamond to catch 200 mHz
We developed a python based software that’s controlling a sdr software based on gnu radio.
We update TLE everyday, our azimuth and élévation rotor follow the satellites and we catch the signal with a sdr uno, plus a switch that choose antenna with the good satellite.
The machine is monitored by a bench of sensors , wind, humidity, temp. It can be control by internet via the website
The machine search for peaks around the chosen frequency, Also the sound is processed by max/msp, we denoise it and we make music out of it
The 3 metallics pavillons blows the sound noise to the audience Each time a satellite shows up, the machine sends a story told by one of our recording, a woman actors voice , it tells a specific history that’s tells a narrative about the satellite that’s on air … but in French
If you are unable to visit the installation in person, it appears that their website also broadcasts the last received satellite's sound. The website also shows photos of the history of the zombie satellites.
If you're interested in other art based on satellites and software defined radios, have a look at our previous post on the open weather project, and the "signs of life" project. Another SDR art project was 'Holypager', an art installation that continuously prints out pager messages received by a HackRF, and "ghosts in the air glow" project which used the HAARP antenna array to broadcast an art project.