Multiple Comprehensive Tutorials on Weather Satellite Decoding

Over on his website "Jacopo's Lair" IU1QPR (@original_lego11) who is also a developer for SatDump has written up many tutorials about weather satellite decoding that involve the use of SatDump. SatDump is a popular piece of software often used with RTL-SDRs and other low cost SDRs for decoding weather satellite images.

With a small satellite dish, feed, RTL-SDR and LNA+filter and the SatDump software it's possible and download beautiful images of the earth from many geostationary and polar orbiting weather satellites. We note that we are currently taking pre-orders on Crowd Supply for our Discovery Dish system, which is low cost hardware designed to help users get started with weather satellite reception.

Over on Reddit IU1QPR has created a listed summary of all the tutorials he's written. These are currently the most up to date and comprehensive tutorials that we have found on this topic. The tutorials cover everything from what satellites are available, what dish sizes you need, what SDRs can be used, what LNA+filter and other hardware you need, and how to use the SatDump software.

Satellite reception and decoding

Automated stations

SatDump usage

All have been moved to SatDump's documentation page

Satellite data processing and usage

From the HRPT tutorial: What various HRPT signals look like on the spectrum.
From IU1QPR's HRPT tutorial: What various HRPT signals look like on the spectrum.

SDR++ Android APK now supports the RTL-SDR Blog V4

Thank you to SDR++ developer Ryzerth who has let us know that RTL-SDR Blog V4 support has recently been added to the nightly build of the APK. With this release, Android is now fully supported by the RTL-SDR Blog V4 via Martin Marinov's SDR Driver app (which many SDR applications connect to), SDRAngel and now SDR++.

A reminder: With SDR++ you may find that you will need to close (using the task manager on Android) and reopen the app a couple of times before it will detect an RTL-SDR dongle. 

If you enjoy SDR++ please consider supporting the developer on Patreon.

Blog V4 Receiving Broadcast FM on Android with SDR++
Blog V4 Receiving Broadcast FM on Android with SDR++

A Tribute to Amateur Radio Astronomer Job Geheniau (Job’s Radio Telescope)

Job Geheniau was someone whose amateur radio astronomy projects were often featured on RTL-SDR Blog (often referred to as Job's Radio Telescope). It with great sadness that we have recently learned that Job Geheniau passed away from cancer in late December 2023. We would like to take the time share this post to highlight some of his achievements in the amateur radio astronomy field.

Back in 2020 Job first surprised us with one of his first radio astronomy results (Part 1, Part 2) where he was able to image the Milky Way in neutral hydrogen by using a 150cm dish, RTL-SDR, LNA and motorized mount. Over eight nights he recorded hydrogen line readings throughout the Milky Way and ended up creating a 2D Excel sheet that showed an image of the Milky Way at the 1420 MHz hydrogen line frequency. 

Job would go on, rapidly evolving and each time showing us that low cost hardware set up in a backyard could be used to unlock many of the secrets of the universe. Using a satellite dishes less than two meters in diameter, RTL-SDRs, LNAs and filters he was able to:

Job's Radio Astronomy website remains up at https://jgeheniau.wixsite.com/radio-astronomy, and many results and writeups of his other experiments can be found there. We will sorely miss posting about Job's achievements, but we hope that his life has inspired you to take a closer look at the amateur radio astronomy hobby.

A tribute to Job will also be published in the next membership journal from the Society of Amateur Radio Astronomers.

Building a Drone Tracking Radar with the ADALM-PHASER and PlutoSDR

The ADALM-PHASER is a kit designed to provide experience with phased array beamforming and radar concepts. The kit consists of a PlutoSDR, mixers, LO synthesizer, ADAR1000 beamformer chip, LNAs and array of patch antennas. It operates between 10-11 GHz, has 500 MHz BW FMCW chirps, and has 8 receive channels and 2 transmit channels. It is an open source kit that costs US$2800, and it is produced and available from Analog Devices. Currently the kit appears to not be in stock, but they note that they are working on getting more stock in soon.

The ADALM-PHASER a phased array kit for implementing radar and other phased array experiments.
The ADALM-PHASER a phased array kit for implementing radar and other phased array experiments.

Over on YouTube, Jon Kraft who appears to be affiliated with Analog Devices, is working on a series of videos that will ultimately result in a drone tracking radar being built with the ADALM-PHASER. Currently two videos have been released.

The first is an overview of radar concepts, giving an explanation of pulsed vs CW radar, and the various hardware options we have to implement low cost versions of these methods.

The second video covers more radar concepts like range resolution and shows us how to build a CW radar with the ADALM-PHASER system.

The three remaining videos are yet to be released, so keep an eye on his channel for updates.

Build Your Own Drone Tracking Radar: Part 1

Build Your Own Drone Tracking Radar: Part 2 CW Radar

Tech Minds: Video on DJI Drone Detection on the AntSDR E200

Just recently we posted about the release of some firmware for the AntSDR E200 which allows it to decode DJI DroneID. DroneID is a protocol designed to transmit the position of the drone and operator to authorized entities such as law enforcements and operators of critical infrastructure.

In his latest video Matt from the Tech Minds YouTube channel shows this firmware in action. In the video he first shows how to install the firmware, and how to connect to its serial output. He goes on to test it with his DJI Mini 4 Pro and show some live DroneID frames being decoded.

DJI Drone Hacking Using Software Defined Radio ANTSDR E200

An HF Ham Radio SSB/AM/FM/CW Transmitter made from a Raspberry Pi Pico and not much more

Over on Hackaday we've seen a story about a Raspberry Pi Pico based software defined radio transmitter that is capable of transmitting SSB, AM, FM and CW anywhere between 0.5 - 30 MHz.

The design generates an oscillator signal using the Pico's Programmable IO. For AM/SSB it uses the PWM output pins to generate an RF envelope which gets mixed together with the oscillator using an analog multiplexor. A small microphone is also connected to the Pico for voice transmissions. The designer notes that the output power is far too low to be used on the air, but adding an output amplifier would help.

The software is all open source and provided on GitHub, and more information about the design can be found on the designer's '101things' website.

The Raspberry Pi Pico is a low cost microcontroller board, and we note it cannot run Linux like standard Raspberry Pi boards. This means that software like RpiTX cannot be used.

Build a Ham Transmitter with a Raspberry Pi Pico

Tech Minds: Testing the Jstvro Handheld Spectrum Analyzer

In one of his latest videos Matt from the Tech Minds YouTube channel tests out the "Jstvro" handheld spectrum analyzer which can be found on sites like Banggood and Aliexpress (the device is cheaper on Aliexpress) for about US$127.50 for the single antenna model, and US$165 for the dual antenna model including shipping. The device appears to be a clone of the RF Explorer, which is a spectrum analyzer that has been on the market for several years.

A spectrum analyzer can be used to visualize the RF spectrum and find frequencies that are active. It cannot demodulate signals like an SDR.

The Jstvro spectrum analyzer covers 240-960 MHz on the first port and 15 - 2700 MHz on the second port, with a total visible bandwidth of anywhere between 112 kHz to 600 MHz. It comes with a single color illuminated LCD screen.

In the video Matt gives an overview of the spectrum analyzer and shows it operating. He notes that the USB-C connection to the PC does not appear to be working and Matt was unable to find the PC software or firmware updates mentioned in the manual. In the rest of the video Matt demonstrates the 2.4G WiFi analyzer feature, the spectrum analyzer feature and goes over the settings.

Visualize the RF Spectrum With This Handheld Spectrum Analyzer

SDU-X: Software Defined Data Transmission with Ultrasonic Transducers

Damian needed to get telemetry from his off-grid solar system 150 feet away, but didn't want to spin up another unreliable WiFi device. Instead he came up with a clever solution that involves using ultrasonic transducers as the physical layer of a software defined communications system instead of RF transmitters and receivers.

Having worked on RF communications systems before, Damian knew that the same  concepts apply no matter what the physical layer of communication is. His system called SDU-X uses two ultrasonic transducers mounted on 3D printed parabolic dish's to increase the directional gain, and an Arduino Nano with amplifiers and a Digital to Analog (DAC) converter for the ultrasonic transmission.

His post explains the hardware and protocol implementation, as well as explaining the Arduino code that he's released for free. The code and 3D printer models can be found on Thingiverse.

SDU-X: A software defined ultrasonic communications system.
SDU-X: A software defined ultrasonic communications system.